Superstars or Supervillains?
Large Firms in the South Korean Growth Miracle*

Jaedo Choi
Federal Reserve Board

Andrei A. Levchenko
University of Michigan
NBER and CEPR

Dimitrije Ruzic
INSEAD

Younghun Shim
International Monetary Fund

June 2024

Abstract
We quantify the contribution of the largest firms to South Korea's economic performance over the period 1972-2011. Using firm-level historical data, we document a novel fact: firm concentration rose substantially during the growth miracle period. To understand whether rising concentration contributed positively or negatively to South Korean real income, we build a quantitative heterogeneous firm small open economy model. Our framework accommodates a variety of potential causes and consequences of changing firm concentration: productivity, distortions, selection into exporting, scale economies, and oligopolistic and oligopsonistic market power in domestic goods and labor markets. The model is implemented directly on the firm-level data and inverted to recover the drivers of concentration. We find that most of the differential performance of the top firms is attributable to higher productivity growth rather than differential distortions. Exceptional performance of the top 3 firms within each sector relative to the average firms contributed 15% to the 2011 real GDP and 4% to the net present value of welfare over the period 1972-2011. Thus, the largest Korean firms were superstars rather than supervillains.

Keywords: large firms, market power, productivity, misallocation, economic growth
JEL Codes: F12, F16, L11, N15, O40

*We thank Miren Azkarate-Askasua (discussant), Luis Baldomero-Quintana, Javier Cravino, Dave Donaldson, Manuel García-Santana, John Lopresti (discussant), Joonseok Oh, Thomas Philippon, Paul Rhode, Sebastian Sotelo, Aaron Tornell, Ariel Weinberger (discussant), Daniel Yi Xu and seminar participants at CEPR ESSIM, Chung-Ang, EIIT, IFC, IMF, INSEAD/College de France, KAEO, KDI, NYUAD, MATW, Midwest Macro, SED-Barcelona, Toronto, UCLA, USC, UT Austin, and Yonsei for helpful comments. The views expressed in this paper are our own, and do not represent the views of the Board of Governors of the Federal Reserve, nor any other person associated with the Federal Reserve System. The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.
E-mail: jaedo.choi@frb.gov, alev@umich.edu, dimitrije.ruzic@insead.edu, yshim@imf.org.
1. INTRODUCTION

The rise of “superstar” firms and increased firm concentration have attracted a great deal of recent attention (e.g. Covarrubias et al., 2020; De Loecker et al., 2020; Autor et al., 2020). These trends have been viewed mostly in a negative light, and blamed for rising markups and markdowns and falling labor share. This phenomenon is of course not unprecedented: the rise in industrial concentration during the Gilded Age prompted similar debates and elicited well-known policy responses (e.g. Lamoreaux, 2000, 2019). However, whether concentration is bad for economic performance or welfare depends on both the underlying causes and consequences of increased concentration. For instance, changes in concentration could be driven by productivity growth differentials, changes in distortions, or selection of large firms into exporting. Markups and markdowns would correspondingly be affected by these trends. All of these forces are not mutually exclusive, and disentangling the drivers of firm concentration is important for understanding impact of large firms on the macroeconomy.

Figure 1: Real GDP Per Capita and Firm Concentration of South Korea

A. Real GDP per capita (thousands 2010 USD) B. Mfg. Concentration Ratio of the Top-3 (%)

Notes. Panel A plots the real GDP per capita in thousands 2010 US dollars. Panel B plots the sales shares of the top 3 firms in each manufacturing sector in the total manufacturing gross output.

This paper studies the role of large firms in the long-run economic performance of South Korea between the 1970s and the 2010s. This setting is of particular interest for 2 reasons. First, this is the growth miracle period (Lucas, 1993). The left panel of Figure 1 displays the well-known rapid growth in South Korea. Between 1972 and 2011, the real GDP per capita increased nearly 12-fold (a staggering 6.5% average annual growth rate over 40 years). And second, South Korea is famous for the presence of very large firms. While this fact is familiar in levels (see, e.g. di Giovanni and Levchenko, 2012), the right panel of Figure 1 displays the changes in firm concentration over this period. It plots the share of the top 3 firms in each manufacturing sector in total manufacturing gross output. The top-3 share

1
increased from 10.1% to 28.5% between the 1970s and the 2010s.¹ This long-run trend in the South Korean firm concentration has not to our knowledge been previously documented in the literature. Thus, superficially at least, it appears that the rising concentration had not held back the growth miracle. However, to fully understand the role of concentration in South Korea’s macroeconomy, we must quantify the forces that produced this trend.

Our theoretical contribution is to develop a quantifiable model of individual firms’ role in concentration and real income. We set up a general equilibrium multi-sector heterogeneous-firm small open economy framework, in which the firm size distribution is jointly determined by (i) heterogeneous productivity à la Melitz (2003); (ii) heterogeneous idiosyncratic labor and capital distortions à la Hsieh and Klenow (2009); (iii) selection into exporting à la Melitz (2003); (iv) oligopoly in domestic goods markets à la Atkeson and Burstein (2008); (v) oligopsony labor markets à la Berger et al. (2022); and (vi) non-constant returns to scale at the firm level. All of these features interact with each other and shape firm concentration.

To guide quantification, we state 4 analytical results. First, we provide a mapping between unobservable firm primitives and observable firm market shares in the data. This result allows us to recover the key candidate structural determinants of firm concentration – productivity, distortions, and export market access – from data. Second, we derive aggregations of micro-level productivities, distortions, and foreign market access into sector-level production functions, TFPs, and markups, that generalize existing results in the literature to our richer setting. Third, we derive an additive decomposition of the top-3 concentration ratio into the components capturing differential top-3 firms’ productivity, foreign market access, entry and exit into the top 3, and sectoral reallocation. Fourth, we state a proposition that connects sectoral concentration and sectoral TFP. The proposition shows that concentration-increasing shocks to firm productivity, distortions, or export demand can either raise or lower sectoral TFP. Sectoral TFP falls with concentration when the firms that grow in size were initially sufficiently distorted, and vice versa. Thus, the shocks that produced the observed increase in South Korean concentration have an ex ante theoretically ambiguous impact on aggregate productivity, real GDP, and welfare. It is ultimately a quantitative question.

Our quantitative contribution is to provide a joint account of the micro (changing concentration) and the macro (real GDP and welfare) economic performance in South Korea. The quantification employs a novel panel firm-level dataset spanning 40 years, 1972-2011. Importantly, our model is implemented directly on firm-level data, so that actual firms in South Korea correspond to firms in the model. We invert the model to recover firm-level productivity, distortions, and foreign demand from data on domestic and export sales shares, wage bill shares, and capital shares. Productivity and distortions are identified jointly by comparing the domestic sales, wage bill, and capital shares, after accounting for exports. Intuitively, higher productivity makes a firm larger on all dimensions, increasing both sales and factor usage symmetrically. By contrast, a distortion disproportionately

¹The increase in concentration is equally evident in other common concentration measures, such as the top 10 firms economywide or the Herfindahl index.
increases a firm’s factor share relative to the increase in the sales share. In our setting this mapping is made more complicated by heterogeneous exporting, non-constant returns to scale, and variable price markups and wage markdowns. Thus, the inversion also requires information on export shares, recovers the export demand shifters, and accounts for non-constant returns to scale and variable markups/downs in a theory-consistent way. When fed back into the model, the shocks reproduce both firm-level (sectoral sales, export, and factor usage shares) and aggregate (GDP, sectoral output, exports, and imports) objects in the data. We disentangle the contributions of each of these factors to South Korean concentration and macro outcomes over this period.

Our results can be summarized as follows. The top-3 firms experienced substantially higher TFP growth over this period. While they were 2.6 times more productive than other firms in 1972, they were 10.9 times more productive in 2011. They also experienced a faster increase in foreign demand. By contrast, the top-3’s relative labor and capital distortions fluctuated widely over this period but exhibited no long-run trend. The decomposition of the change in concentration shows that about 57% of the total increase from 1972 to 2011 is accounted for by sectoral reallocation – sectors with larger firms growing faster than sectors with smaller firms. The remaining 43% is driven by within-sector increases in the top-3 firm shares. Of that, about half is due to the churning of the set of the top-3 firms, indicating quite a bit of dynamism at the top of the firm size distribution over this period.

We next quantify the contribution of the top-3 firms to South Korean real GDP and welfare and assess the strength of the individual underlying forces. We compare the observed baseline economy to an alternative in which the top-3 firms instead exhibited the average sectoral growth rates of productivity, distortions, and export market access. Had the top-3 firms not experienced differential shocks, the top-3 concentration ratio change would have been one-fifth of that in the data, but 2011 real GDP would have been 15% lower, and the net present value of welfare over 1972-2011 would have been 4% lower. Most of the total effect is due to the top-3 firms productivity. Without the differential productivity growth of the top-3 firms, 2011 real GDP would have been 13.7% lower, and the NPV of welfare would have been 2.8% lower. Differential foreign market access and distortions had a more modest GDP and welfare impact. The positive impacts of the top firms come despite the fact that higher concentration led to higher markups and markdowns. Indeed, notwithstanding the observed increase in concentration, aggregate markups and wage markdowns rose quite modestly in the baseline economy, and barely changed in the counterfactuals.

Our framework also allows us to quantify the contributions of individual firms to real GDP and welfare over this period. We begin by computing the impact of South Korea’s two largest firms, Samsung Electronics and Hyundai Motors. Had Samsung Electronics and Hyundai Motors’ shocks evolved at the same rate as the regular firms’, real 2011 GDP would have been 6.4% and 0.35% lower, and welfare 1.0% and 0.5% lower, respectively. Thus, even a single large firm can exert a noticeable influence on the aggregate long-run outcomes.

We next compute the contribution of each of the top-3 firms’ shocks to both concentration and
real GDP. This exercise connects the quantification to the theoretical result that a firm-level shock that raises concentration can either increase or decrease sectoral TFP, depending on the initial conditions. For a large majority of top-3 firms, idiosyncratic shocks contributed positively to both concentration and real GDP, echoing the aggregate results that the top-3 firms were a positive force. It appears that in South Korea, most – though not all – top firms were indeed superstars rather than supervillains.

Related literature. A compact characterization of our analysis is that we perform growth (and concentration) accounting but with firm-level shocks. As such, we build primarily on two strands of the literature. The first is growth accounting (see among many others, Solow, 1956; Domar, 1961; Hulten, 1978; Lucas, 1988; Mankiw et al., 1992; Klenow and Rodríguez-Clare, 1997; Barro, 1999; Hall and Jones, 1999; Fernald and Neiman, 2011; Gourinchas and Jeanne, 2013; Baqee and Farhi, 2019a; Baqee et al., 2023), and in particular the work on the Asian growth experience (e.g. Young, 1995; Hsieh, 2002; Song et al., 2011; Chang and Hornstein, 2015; Ohanian et al., 2018; Han and Lee, 2020; Fan et al., 2023). With the partial exception of Alviarez et al. (2023b), the growth accounting literature has not quantified the role of individual firms in aggregate long-run real income.

The second is the literature on the aggregate implications of microeconomic shocks (see among many others, Gabaix, 2011; Acemoglu et al., 2012; di Giovanni and Levchenko, 2012; di Giovanni et al., 2014, 2018, 2024; Carvalho and Gabaix, 2013; Atalay, 2017; Cravino and Levchenko, 2017; Huneeus, 2018; Baqee and Farhi, 2019b, 2020; Carvalho and Grassi, 2019; Huo et al., 2023b). Most of this research program has focused on the impact of individual firms on shock transmission and business cycle fluctuations. By contrast, this paper turns attention to the role of individual firms in long-run economic performance.

Our focus on concentration is inspired by the recent active research program on this topic (e.g. Autor et al., 2020; Covarrubias et al., 2020; De Loecker et al., 2020; Rossi-Hansberg et al., 2021; Hsieh and Rossi-Hansberg, 2023; Kwon et al., 2024; Ma et al., 2024). While most research in this area has focused on the US and developed countries, we turn attention to a relatively underexplored setting: South Korea’s growth miracle. Lee and Shin (2023) document a number of stylized facts about average plant size, misallocation, and business dynamism in South Korea over this period. We provide a full-fledged model-based quantification of the sources of rising firm concentration and its consequences for real GDP and welfare.

Our modeling and quantification build on a number of research programs that would be impractical to review comprehensively here: (i) large firms (e.g. Atkeson and Burstein, 2008; Eaton et al., 2012; Amiti et al., 2014, 2019; Freund and Pierola, 2015; Gaubert and Itskhoki, 2021); (ii) misallocation (e.g. Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009; Banerjee and Moll, 2010; Buera et al., 2013; Buera and Shin, 2013; Moll, 2014; Hsieh et al., 2019; Itskohki and Moll, 2019; Peters, 2020; Ruzic and Ho, 2023); (iii) markups and markdowns (Edmond et al., 2015, 2023; De Loecker and Eeckhout, 2018; Burstein et al., 2021; De Ridder et al., 2021; Diez et al., 2021; Berger et al., 2022; Deb et al., 2022, 2024; Yeh et al., 2022; Afrouzi et al., 2023; Alviarez et al., 2023a; Felix, 2023; Azkarate-Askasua and Zerecero,
and (iv) firm dynamics (e.g. Foster et al., 2001; Akcigit et al., 2021; Kehrig and Vincent, 2021; Sterk et al., 2021; Akcigit and Ates, 2023; Asturias et al., 2023; Eslava et al., 2023).

The rest of this paper is organized as follows. Section 2 builds the quantitative framework and states the analytical results that guide the quantification. Section 3 discusses the calibration strategy and the data, and Section 4 presents the quantitative results. Section 5 concludes. The Appendix collects the details of theory, data, and quantification, as well as results of additional exercises.

2. Theoretical Framework

This section sets up a heterogeneous-firm small-open-economy model and states four propositions that shape our quantification. The first proposition maps the model primitives to firm-level shocks, the second details how we aggregate firm-level shocks to speak to growth and real income, the third provides a model-based decomposition of changes in concentration, and the fourth highlights the ambiguous relationship between concentration and sectoral productivity.

2.1 Setup

The world is divided into Home and Foreign, corresponding to South Korea and the rest of the world. Home is a small open economy that takes Foreign’s demands and export prices as exogenously given. In describing the within-period allocations, we omit time subscripts in order to de-clutter notation. There is a continuum of sectors, indexed by \(i, j \in [0, 1]\). In the manufacturing sectors \(J^M \subset [0, 1]\), there is a finite number of heterogeneous firms and one fringe firm, indexed by \(f \in F_j = \{1, \ldots, F_j - 1, \tilde{f}\}\), where \(F_j\) is the set of sector \(j\) firms, \(F_j\) is their number \((F_j = |F_j|)\), and \(\tilde{f}\) denotes the fringe firm. Heterogeneous firms have oligopolistic and oligopsonistic market power in domestic goods and labor markets, whereas fringe firms act as monopolistic competitors.\(^2\) The remainder of the economy is composed of the commodity and service sectors \(J_{NM} = [0, 1]/J^M\), where there are only fringe firms. Firm entry and export status are exogenous, with \(F_j^E \subset F_j\) denoting the set of sector \(j\) exporters.

Households. A representative household supplies labor and owns the country’s capital stock and all the firms. It maximizes a GHH objective (Greenwood et al., 1988):

\[
\max_{\{C, L\}} \left(C - \frac{L^{1+\varphi}}{1+\varphi} \right) \\
s.t. \\
PC = WL + \varphi K + \Pi + T + D,
\]

where \(C\) is consumption whose price is \(P\), \(L\) is composite labor earning the wage index \(W\), \(K\) and \(\varphi\) are the capital stock and the rental price of capital, \(\Pi\) is aggregate profits, \(T\) is the lump sum transfer

\(^2\)Fringe firms can be interpreted as a continuum of atomistic homogeneous firms, whose mass is normalized to one.
from the government, and \mathcal{D} is a transfer from abroad (trade deficit).

The household provides differentiated workers to firms and sectors, with the composite labor L taking a CES form with two nests (Berger et al., 2022):

$$
L = \left(\int_0^1 L_j^{\frac{\theta}{\theta + 1}} d j \right)^{\frac{\theta}{\theta + 1}}, \quad L_j = \left(\frac{1}{F_j} \sum_{f \in F_j} l_{fj}^{\frac{\theta}{\theta + 1}} \right)^{\frac{\theta}{\theta + 1}},
$$

(2.1)

where L_j is sectoral employment and l_{fj} is employment in firm f. This formulation allows for imperfect substitution of workers both within and across sectors, with the elasticities of substitution η and θ subsequently shaping firms’ labor market power. Guided by existing evidence, we assume that jobs within sectors are more substitutable than jobs across sectors, $\eta > \theta$. The sectoral labor aggregate is normalized by the number of firms to neutralize the love-of-variety effects. The aggregate and sectoral wage indices are:

$$
W = \left(\int_0^1 W_j^{1+\theta} d j \right)^{\frac{1}{1+\theta}} \quad \text{and} \quad W_j = \left(\frac{1}{F_j} \sum_{f \in F_j} w_{fj}^{1+\eta} \right)^{\frac{1}{1+\eta}},
$$

where w_{fj} is wage paid by firm f. The aggregate labor supply is given by

$$
L = \left(\frac{1}{W} \right)^{\psi}.
$$

(2.2)

Sectors. An aggregating firm within each sector j combines the output of individual firms into a sectoral Home good Y_j^H that is sold at price P_j^H:

$$
Y_j^H = \left[F_j^{-\frac{\theta}{\rho}} \sum_{f \in F_j} (y_{fj}^H)^{\frac{\rho}{\rho - 1}} \right]^{\frac{\rho - 1}{\rho}} \quad \text{and} \quad P_j^H = \left[\frac{1}{F_j} \sum_{f \in F_j} (p_{fj}^H)^{1-\sigma} \right]^{\frac{1}{1-\sigma}},
$$

(2.3)

where y_{fj}^H is the quantity of firm f output demanded in domestic markets, p_{fj}^H is firm f’s domestic price, and σ is the elasticity of substitution across firms within a sector. Note that the Home sector j output is also normalized by the number of firms to neutralize the love-for-variety effects.\footnote{CES aggregators with substitution elasticities above 1 have the well-known property that the aggregate increases in the number of units (here, firms). We neutralize this effect with the eye towards the quantitative implementation. In our data, the number of firms rises substantially over time. Without un-doing love-for-variety, the quantitative model would interpret the increasing number of firms as increasing real output. However, our quantification will target data on sectoral real output and price indices, and national statistical agencies do not incorporate love-for-variety when they construct these objects. To make the model consistent with the targets for quantification, our sectoral aggregates are also set up not to exhibit love-for-variety. Section 4.4 and Appendix Table B6 report the results without neutralizing love-for-variety, and show that the main conclusions of the counterfactual exercises are unchanged.}

The home bundle Y_j^H is combined with the foreign Y_j^F into a sectoral aggregate Y_j:

$$
Y_j = \left[(y_j^H)^{\frac{\rho}{\rho - 1}} + (y_j^F)^{\frac{\rho}{\rho - 1}} \right]^{\frac{\rho}{\rho - 1}} \quad \text{and} \quad P_j = \left[(P_j^H)^{1-\rho} + (P_j^F)^{1-\rho} \right]^{\frac{1}{1-\rho}},
$$
where \(\rho \) is the elasticity of substitution between Home and Foreign goods, \(P^F_j \) is the price of \(Y^F_j \) that is exogenous from Home’s perspective, and \(P_j \) is the price of \(Y_j \). The share of imports in total sector \(j \) expenditure is \(\lambda^F_j = (P^F_j/P_j)^{1-\rho} \). The share of expenditures on domestic goods is correspondingly \(\lambda^H_j = 1 - \lambda^F_j \).

Sectoral output has two uses: consumption for households and intermediate inputs for firms. Perfectly competitive producers use constant-returns-to-scale Cobb-Douglas technologies to produce \(C \) at price \(P \):

\[
C = \exp \left(\int_0^1 \alpha_j \ln Y^C_{dj} \, dj \right) \quad \text{and} \quad P = \exp \left(\int_0^1 \alpha_j \ln P_j \, dj \right) \text{ where } \int_0^1 \alpha_j \, dj = 1,
\]

and to produce intermediate inputs \(M_i \) used by sector \(i \) at price \(P^M_i \):

\[
M_i = \exp \left(\int_0^1 \gamma^M_{ij} \ln Y^M_{ij, dj} \right) \quad \text{and} \quad P^M_i = \exp \left(\int_0^1 \gamma^M_{ij} \ln P_j \, dj \right) \text{ where } \int_0^1 \gamma^M_{ij} \, dj = 1, \quad \forall i \in [0, 1].
\]

Parameters \(\alpha_i \) and \(\gamma^M_{ij} \) are the Cobb-Douglas cost shares, and \(Y^C_j \) and \(Y^M_{ij} \) are sector \(j \) outputs demanded by final consumption and for intermediate use by sector \(i \), respectively.

Firms. Each heterogeneous firm produces a unique variety using labor \(l_{fj} \), capital \(k_{fj} \), and intermediate inputs \(m_{fj} \), with exogenous productivity \(a_{fj} \):

\[
y_{fj} = a_{fj} l_{fj}^{\gamma^L_{fj}} k_{fj}^{\gamma^K_{fj}} m_{fj}^{\gamma^M_{fj}}, \quad \gamma^L_{fj} + \gamma^K_{fj} + \gamma^M_{fj} = \gamma_j.
\]

Production is subject to returns to scale \(\gamma_j \), with \(\gamma^L_{fj}, \gamma^K_{fj}, \) and \(\gamma^M_{fj} \) denoting the cost shares of factors and inputs. Each firm faces downward-sloping CES demands:

\[
y^H_{fj} = \frac{1}{E_j} (P^H_{fj})^{-\sigma} (P^H_j)^{\sigma - \rho} P_j^{\rho - 1} E_j, \quad y^F_{fj} = (P^F_{fj})^{-\sigma} D_{fj}, \quad (2.4)
\]

where \(E_j \) is the total sector \(j \) domestic expenditure that the firm takes as given. Firms are potentially oligopolistic in the domestic goods market: they internalize the impact of their own price \(P^H_{fj} \) on \(P^H_j \) and \(P_j \). Export demand \(y^F_{fj} \) is a function of the export price \(P^F_{fj} \) and a firm-specific exogenous foreign demand shifter \(D_{fj} \), that includes any iceberg trade costs. For non-exporters, \(D_{fj} = 0 \). We assume that South Korean firms are monopolistically competitive in the foreign market. Firms allocate their output to domestic and foreign markets subject to the following resource constraint:

\[
y_{fj} = y^H_{fj} + y^F_{fj}. \quad (2.5)
\]

Each firm faces an upward-sloping labor supply curve, potentially allowing it to exercise two
forms of labor market power:

\[l_{fj} = \frac{1}{F_j} w_{fj} W_j^\theta_0 W^{-\theta} L. \] (2.6)

By internalizing how its labor demand affects the wage \(w_{fj} \), a firm can exercise monopsonistically competitive power. Additionally, by internalizing how its labor demand affects the sectoral wage \(W_j \), a firm can exercise oligopsony power. All firms take the aggregate wage index \(W \) as given.

Firms maximize their profits:

\[
\pi_{fj} = \max_{(y_{fj}, y_{fj}^H, y_{fj}^L, k_{fj}, m_{fj})} \left\{ p_f^H y_{fj}^H + p_f^F y_{fj}^F - (1 + \tau_{fj}) w_{fj} l_{fj} - (1 + \tau_{fj}^K) q_k f_j - P^M m_{fj} \right\},
\]

subject to the resource constraint (2.5) and demand and labor supply functions (2.4) and (2.6). In hiring labor and capital firms potentially face exogenous distortions, \(\tau_{fj}^L \) and \(\tau_{fj}^K \), which are interpreted as taxes or subsidies to labor and capital inputs. The rental rate of capital \(\varphi \) is common across all firms.

The domestic goods and labor market structure is Cournot. Firms set quantities to maximize their own profits, taking as given foreign quantity supplied \(Y_f^F \), and the vectors of domestic quantities supplied \(y_{fj}^H \), and of labor employed \(l_{fj} \), by all the other firms in the sector.

Profit maximization implies that the marginal revenues should equal the marginal costs of labor, as implied by the first-order condition with respect to \(l_{fj} \):

\[
p_f^H (1 - \frac{1}{\varepsilon_{fj}}) \frac{\partial y_{fj}^H}{\partial l_{fj}} = p_f^F (1 - \frac{1}{\sigma}) \frac{\partial y_{fj}^F}{\partial l_{fj}} = (1 + \tau_{fj}^L) \frac{1 + \frac{1}{\varepsilon_{fj}}}{\varphi},
\] (2.7)

where \(\varepsilon_{fj} \) elasticity of domestic demand and \(\varepsilon_{fj}^L \) is the elasticity of labor supply. Both of these are firm-specific, since firms can exercise market power in both domestic product and labor markets. The first two terms in (2.7) are the marginal revenue products of labor in the domestic and in foreign markets; the third term is the marginal cost of labor.

In turn, the two elasticities can be written as functions of exogenous model parameters and endogenous shares:

\[
\varepsilon_{fj} = - \left(\frac{\partial \ln p_f^H}{\partial \ln y_{fj}^H} \right)^{-1} = \left[\frac{1}{\sigma} + \left(\frac{1}{\rho} - \frac{1}{\sigma} \right) s_f^H + \left(1 - \frac{1}{\rho} \right) \lambda_f^H s_f^H \right]^{-1}
\] (2.8)

and

\[
\varepsilon_{fj}^L = \left(\frac{\partial \ln w_{fj}}{\partial \ln l_{fj}} \right)^{-1} = \left[\frac{1}{\eta} + \left(\frac{1}{\theta} - \frac{1}{\eta} \right) s_f^L \right]^{-1},
\] (2.9)

where \(s_f^H \) is the share of firm \(f \)’s sales in the total sector \(j \) domestic firms’ revenue, and \(s_f^L \) is the share of firm \(f \) in the sector \(j \) wage bill. Expressed as functions of these elasticities, domestic (\(\mu_f^H \))
and exporting \((\mu^F_{fj})\) markups and wage markdowns \(\mu^L_{fj}\) are:

\[
\begin{align*}
\mu^H_{fj} &= \frac{\epsilon_{fj}}{\epsilon_{fj} - 1}, \\
\mu^F_{fj} &= \frac{\sigma}{\sigma - 1}, \\
\mu^L_{fj} &= \frac{\epsilon_{fj} + 1}{\epsilon_{fj}},
\end{align*}
\] (2.10)

Firms with larger domestic sales shares \(s^H_{fj}\) face more inelastic demand and charge higher domestic markups over marginal cost. This size-elasticity correlation is mediated by foreign competition (as in, e.g., Edmond et al., 2015): when foreign competition is greater—captured by a lower \(\lambda^H_{fj}\)—all firms face more elastic demand and all markups are lower. Moreover, firms with a larger sectoral wage bill share \(s^L_{fj}\) face more inelastic labor supply and impose higher wage markdowns. Note that the export markup \(\mu^F_{fj}\) is common across firms, consistent with our assumption that these firms are globally small and monopolistically competitive in foreign markets.\(^4\) The fringe firms face the same demand and labor supply functions. However, because they do not exert oligopolistic and oligopsonistic power, they charge constant markups and markdowns as in the standard monopolistically competitive models: \(\mu^H_{\tilde{f}j} = \sigma / (\sigma - 1)\) and \(\mu^L_{\tilde{f}j} = (\eta + 1)/\eta\).

The firm’s unit cost function is:

\[
c_{fj} = \begin{bmatrix} y^{1-\gamma_j}_{fj} a_{fj} (1 + \tau^K_{fj} k_{fj}) p^M_j \gamma^K_j (1 + \tau^M_j) \gamma^M_j \frac{1}{\gamma_j} \end{bmatrix}_{\gamma_j}.\] (2.11)

Marginal cost is decreasing in productivity and increasing in different input distortions. When returns to scale \(\gamma_j\) differ from 1, marginal cost varies with the scale of production. The markups are applied to this marginal cost.

Appendix A states the market clearing conditions and defines the equilibrium in this economy. We now state a proposition that provides a tight mapping between the unobservable firm primitives \((a_{fj}, \tau^L_{fj}, \tau^K_{fj}, D_{fj})\) and observable data. Denote firm revenue in domestic and foreign markets by \(r^e_{fj} = p^e_{fj} y^e_{fj}\) for \(e \in \{H, F\}\), and total revenue as \(r_{fj} = r^H_{fj} + r^F_{fj}\). The shares of firm \(f\) in domestic sales, wage bills, capital, and exports are:

\[
\begin{align*}
\alpha^H_{fj} &= \frac{r^H_{fj}}{\sum_{g \in g_{fj}} r^H_{gj}}, \\
\alpha^L_{fj} &= \frac{w_{fj} l_{fj}}{\sum_{g \in g_{fj}} w_{gj} l_{gj}}, \\
\alpha^K_{fj} &= \frac{k_{fj}}{\sum_{g \in g_{fj}} k_{gj}}, \\
\alpha^F_{fj} &= \frac{r^F_{fj}}{\sum_{g \in g_{fj}} r^F_{gj}}.
\end{align*}
\]

Proposition 2.1. (Market Shares) For each sector, given sectoral domestic shares \(\{\lambda^H_{fj}\}_j \in F\) and firm revenues in domestic and foreign markets \(\{r^H_{fj}, r^F_{fj}\}\), the shares \(\{s^H_{fj}, s^L_{fj}, s^K_{fj}, s^F_{fj}\}_j \in F\) satisfy the following system of

\(^4\)In spite of its rapid growth, South Korea is still a small economy when measured against the world market. In 2011, imports from South Korea on average accounted for 3% of total absorption in manufacturing sectors in foreign destinations (source: World Input-Output Database). This average sectoral share is of course an upper bound on firm-level sales shares. By contrast, the share of South Korean domestic production in its own domestic manufacturing absorption in 2011 was 77%, highlighting the disparity in South Korean firms’ potential market power in domestic vs. export destinations.
4 × |\mathcal{F}_j\rangle \text{ equations:}

\begin{align}
 s^H_{fj} &= \left(a^{-\gamma_j}_{fj} \mu^H_{fj}(1 + \tau^L_{fj})(s^L_{fj})^{\frac{r^H_{fj}}{\gamma_j}} \right)^{\frac{1}{\gamma_j}} (1 + \tau^K_{fj})^{\frac{y^K_{fj}}{\gamma_j}} \left(\Lambda^H_{fj} \right)^{\frac{y^H_{fj}}{\gamma_j}} - \frac{r^H_{fj}}{\gamma_j}, \\
 s^L_{fj} &= \frac{s^H_{fj} (\Lambda^H_{fj})^{-1}}{\sum_{g \in \mathcal{F}_j} s^H_{gj} (\Lambda^H_{gj})^{-1}} \left(\mu^H_{gj} (1 + \tau^L_{gj}) \right)^{-1} \\
 s^K_{fj} &= \frac{s^H_{fj} (\Lambda^H_{fj})^{-1}}{\sum_{g \in \mathcal{F}_j} s^H_{gj} (\Lambda^H_{gj})^{-1}} \left(\mu^H_{gj} (1 + \tau^K_{gj}) \right)^{-1} \\
 s^F_{fj} &= \frac{s^H_{fj} (\mu^F_{gj}/\mu^H_{gj})^{1-\sigma} \Lambda^F_{gj}}{\sum_{g \in \mathcal{F}_j} s^H_{gj} (\mu^F_{gj}/\mu^H_{gj})^{1-\sigma}} D^F_{gj},
\end{align}

where the markups \(\mu^H_{fj}, \mu^F_{fj}, \) and \(\mu^L_{fj} \) are given by (2.10) and

\[
 \Lambda^H_{fj} = \frac{r^H_{fj}/\mu^H_{fj}}{r^H_{fj}/\mu^H_{fj} + r^F_{fj}/\mu^F_{fj}} = \frac{y^H_{fj}}{y^F_{fj}}.
\]

Proof. See Appendix A. \(\Box \)

The key implication of Proposition 2.1 is that recovering firm-level shocks only requires solving the system of nonlinear equations (2.12)–(2.15) sector-year by sector-year; we do not have to solve the full model. Solving the full model can be computationally costly because we would have to solve for the Nash equilibrium with many firms and sectors jointly. Instead, note that each of the shares in (2.12)–(2.15) depends only on other shares and the parameters of firms in the same sector, allowing us to solve the system separately for each sector-year. This approach to recovering primitives from observed shares is similar to Hsieh and Klenow (2009), Berger et al. (2022), and Deb et al. (2024).

In addition to its computational convenience, Proposition 2.1 highlights the drivers of the cross-sectional dispersion in the different market shares and provides some intuition for the identification of key parameters. For instance, domestic sales shares in (2.12) reflect productivity \(a_{fj} \) as well as price markups \(\mu^H_{fj} \), wage markdowns \(\mu^L_{fj} \), and factor-market distortions \(\tau^L_{fj} \) and \(\tau^K_{fj} \). Moreover, firm-specific export demand can potentially shape domestic market shares through \(\Lambda^H_{fj} \), the ratio of quantity demanded by the domestic market relative to the firm’s total output. The impact of this open-economy margin depends on the returns to scale parameter \(\gamma_j \). Under decreasing returns, for instance, foreign demand drives up a firm’s marginal cost for all production, increasing its domestic price and decreasing its domestic market share relative to an otherwise identical firm that only serves the domestic market.
Similarly, correlations between different market shares help identify different factor distortions and firm-specific foreign demand. For instance—conditioning on productivity and foreign demand—if there were no distortions in hiring labor and capital, there would be a one-to-one mapping between the domestic sales shares in equation (2.12) and the labor or capital shares in (2.13) and (2.14). Using the same intuition as Hsieh and Klenow (2009), we can then recover the factor distortions faced by a firm as deviations from this one-to-one mapping. Furthermore, we can identify firm-specific foreign demand from the export shares in (2.15). Conditioning on other primitives, we would deduce that a firm with a higher export share faces a higher foreign demand.5

2.2 Aggregation and National Accounting

Having shown how to recover firm-specific primitives, this section states a proposition relating sectoral and aggregate objects of interest—output, productivity, markups—to those firm primitives. To start, define the sectoral producer price index (PPI) as:

\[
PPI_j = \left(\frac{1}{F_j} \sum_{f \in F_j} \tilde{p}_{fj}^{1-s} \right)^{1-s}, \quad \text{with} \quad \tilde{p}_{fj} = p_{fj}^H \frac{y_{fj}^H}{y_{fj}} + p_{fj}^F \frac{y_{fj}^F}{y_{fj}},
\]

where \(\tilde{p}_{fj} \) is the firm-level quantity-weighted average of domestic and export prices. The reason behind this definition is that a first-order expansion of (2.16) approximates the total-sales-weighted average of firm-level prices, and thus mimics the PPI constructed by the national statistical agencies. The functional form of \(PPI_j \) can be viewed as a modification of the closed-economy CES welfare-relevant price index. Note that \(PPI_j \) is not the welfare-relevant price index as it does not include foreign import prices and includes some export prices.6 Next define the real gross sectoral output as the nominal gross output \(R_j \equiv \sum_{f \in F_j} r_{fj} \) deflated by the PPI:

\[
Y_j^r = \frac{R_j}{PPI_j}.
\]

These definitions allow us to derive useful analytical aggregation formulas. We characterize two notions of productivity at both the firm and the sectoral level: the productivity for generating physical output—denoted by \(a_{fj} \) and \(A_j \)—and the productivity for generating revenue—denoted by \(tfpr_{fj} \)

5Note that our model nests important benchmarks such as Melitz (2003) and Hsieh and Klenow (2009). Without market power, distortions, and differential foreign demand, higher domestic sales shares would reflect only differences in productivity, as in Melitz (2003). When we eliminate exporting (\(\Lambda_{fj}^H = 1 \forall f \)) and restrict firms to monopolistic competition and perfectly competitive labor markets, we obtain the Hsieh and Klenow (2009) formulas for identifying labor and capital distortions.

6In the closed-economy case, achieved by letting \(D_{fj} \to 0 \ \forall f \) and \(P_{jt}^F \to \infty \), it converges to the welfare-relevant ideal price index: \(PPI_j \to P_j \).
\[a_{fj} = \frac{y_{fj}}{L^f_{fj}k^f_{fj}m^f_{fj}}, \quad A_j = \frac{Y^f_j}{L^f_jK^f_jM^f_j}, \quad \text{TFPR}_j = \frac{r_{fj}}{L^f_jK^f_jM^f_j}, \]

where \(L_j = \left(F^f_j \sum_{f \in F_j} \frac{n+1}{n} \right)^{\frac{n}{n+1}}, K_j = \sum_{f \in F_j} k_{fj}, \) and \(M_j = \sum_{f \in F_j} m_{fj} \) represent sectoral aggregates of labor, capital, and material inputs. From these expressions, our notion of the sectoral production function \(Y^r_{rj} = A_j L^f_j K^f_j M^f_j \) holds by definition.

In defining sectoral markups and markdowns we rely on the notion that revenue shares of flexible inputs are characterized by a ratio of output elasticities, markups and markdowns (see De Loecker and Warzynski, 2012; Yeh et al., 2022). Based on this property, we can back out sectoral markups \(M_j \) and markdowns \(M^L_j \) by comparing sectoral factor shares to output elasticities \(\gamma^M_{fj} \) and \(\gamma^L_{fj} \) (Yeh et al., 2022; Edmond et al., 2023):

\[M_j = \gamma^M_f \left(\frac{P^M_{fj} M_j}{R_j} \right)^{-1}, \quad M^L_j = \gamma^L_f \left(\frac{(1 + \tau^L_{fj}) W_j L_j}{R_j} \right)^{-1}, \]

where \(W_j L_j = \sum_{f \in F_j} w_{fj} l_{fj} \) and the sectoral labor distortion is a wage-bill-weighted average of firm-level distortions: \((1 + \tau^L_{fj}) = \sum_{f \in F_j} s_{fj}^L (1 + \tau^L_{fj}). \) The sectoral markup \(M_j \) is the wedge between the sectoral output elasticity of a flexible input—materials—and its revenue share. The sectoral markdown \(M^L_j \) is the part of the wedge between the sectoral output elasticity of labor inputs and the labor shares that is not accounted for by the sectoral markup and the sectoral labor distortion.

Proposition 2.2 now states the formulas for sectoral markups, markdowns, productivity, and real output as functions of firm-level primitives, markups, markdowns, and observable shares.

Proposition 2.2. (Aggregation)

(i) The sectoral markup \(M_j \) and markdown \(M^L_j \) can be expressed as weighted averages of firm-level markups \(\tilde{\mu}_{fj} \) and markdowns \(\mu^L_{fj} \):

\[M_j = \left(\sum_{f \in F_j} \tilde{\mu}_{fj}^L s_{fj} \right)^{-1} \quad \text{and} \quad M^L_j = \left(\frac{\sum_{f \in F_j} (\tilde{\mu}_{fj} \mu^L_{fj})^{-1} s_{fj}}{\sum_{f \in F_j} \tilde{\mu}_{fj}^L s_{fj}} \right)^{-1}, \]

where \(s_{fj} \) is firm \(f \)'s total sectoral revenue share and \(\tilde{\mu}_{fj} \) is the within-firm average of domestic and foreign markups:

\[s_{fj} = \frac{r_{fj}}{R_j} \quad \text{and} \quad \tilde{\mu}_{fj} = \mu^H_{fj} \frac{y^H_{fj}}{y_{fj}} + \mu^F_{fj} \frac{y^F_{fj}}{y_{fj}}. \]
(ii) Real gross output of each sector can be expressed in terms of a sectoral production function:

\[
Y^r_j = A_j L^L_j K^K_j M^M_j \quad \text{with} \quad A_j = \left[\frac{1}{F_j} \sum_{j \in F_j} \left(\frac{\text{TFPR}_j}{\text{TFPR}_j} \right)^{\sigma - 1} \right]^{1/(\sigma - 1)},
\]

where the ratio of relative revenue productivities \(\text{TFPR}_j/\text{TFPR}_j \) reflects within-sector variation in firm size \(s_{fj} \) and in firm marginal revenue products:

\[
\text{TFPR}_j = s_{fj}^{\gamma - 1} \left(\frac{\text{MRPL}_j}{\text{mrpL}_j} \right)^{\gamma L} \left(\frac{\text{MRPK}_j}{\text{mrpK}_j} \right)^{\gamma K} \left(\frac{\text{MRPM}_j}{\text{mrpM}_j} \right)^{\gamma M},
\]

where \(\text{mrpV}_{fj}, v \in \{l, k, m\} \) are markup-adjusted marginal revenue products, and \(\text{MRPV}_j, V \in \{L, K, M\} \) are their sectoral aggregations. Their functional forms are stated in equations (A.4) and (A.5).

Proof. See Appendix A.

The aggregation results in Proposition 2.2 are open-economy generalizations of existing aggregation results. For instance, the definition of the sectoral markup \(M_j \) in part (i) is similar to the aggregation in Edmond et al. (2015) and Edmond et al. (2023), with the difference being the use of \(\tilde{\mu}_{fj} \), the within-firm average of domestic and foreign markups. Similarly, the result that the product of the sectoral markup \(M_j \) and markdown \(M_L j \) can be expressed as the sales-weighted harmonic weighted average of the product of \(\mu_{fj}^L \) and \(\tilde{\mu}_{fj} \) parallels the closed-economy case in Yeh et al. (2022). Analogously for (ii), our expressions for sectoral productivity generalize those in Hsieh and Klenow (2009) and Ruzic and Ho (2023) to the open economy case, as they feature the global sales shares \(s_{fj} \) and the markups \(\tilde{\mu}_{fj} \) that average across domestic and export destinations.

National accounts and aggregate productivity. From now onwards let \(t \) index years. National accounting conventions define aggregate real GDP at year \(t \) as output evaluated at base prices (prices at the base year \(t - 1 \)) minus real inputs also evaluated at the base year input prices:

\[
Y^r_t = \int_0^1 (\text{PPI}_{j,t-1} Y^r_j - P^M_{j,t-1} M_{jt}) dj.
\]

The change in real GDP between \(t - 1 \) and \(t \) is then:

\[
\dot{Y}^r_t = \int_0^1 S^D_{j,t-1} (\dot{Y}^r_j - S^M_{j,t-1} \dot{M}_{jt}) dj,
\]

\(7\)We nest the closed economy case by letting \(D_{fj} \rightarrow 0 \forall f, j \) and \(P_{fj} \rightarrow \infty \forall j \). Our expressions for sectoral markups and markdowns in equation (2.18) are then identical to those in Yeh et al. (2022) and Edmond et al. (2023). Edmond et al. (2015) also studies the open economy setup. However, our expression for the sectoral markup differs slightly from theirs: our within-firm markup \(\tilde{\mu}_{fj} \) is quantity-weighted while theirs is revenue-weighted, with the difference arising from the way we define \(\text{PPI}_{j} \) and \(Y^r_j \).
where the “hat” denotes time-series changes, \(S_{M, t}^{j, t-1} = \frac{P_{M, t}^{j, t-1}}{R_{t}^{j, t-1}} \) denotes the shares of material expenditures in nominal gross output, and \(S_{D, t}^{j, t-1} \) is the Domar weight:\(^8\)

\[
S_{D, t}^{j, t-1} = \frac{R_{j, t}^{t-1}}{Y^{t-1}}.
\]

Aggregate productivity \(A_{t} \) is then a Domar aggregation of sectoral productivities (Hulten, 1978):

\[
A_{t} = \int_{0}^{1} S_{D, t}^{j, t-1} A_{jt} \text{d} j.
\]

We define the aggregate markup \(M \) and markdown \(M^L \) as sales-weighted averages of their sectoral counterparts:

\[
M_{t} = \left(\int_{0}^{1} M_{jt}^{-1} S_{j, t}^{j, t-1} \right)^{-1} \text{d} j,
\]

\[
M_{t}^{L} = \frac{\left(\int_{0}^{1} (M_{jt} M_{jt}^{L})^{-1} S_{j, t}^{j, t-1} \right)^{-1} \text{d} j}{\left(\int_{0}^{1} M_{jt}^{-1} S_{j, t}^{j, t-1} \right)^{-1} \text{d} j},
\]

where \(S_{j, t}^{j, t-1} = \frac{R_{j, t}^{t-1}}{\int_{0}^{1} R_{j, t}^{t-1} \text{d} i} \) are sectoral revenue shares.

2.3 Concentration Ratio Decomposition

With a view of explaining the change in concentration in Figure 1 through firm primitives, we now state a proposition that decomposes concentration into its firm-level determinants. The objects of the proposition are the sales share of the top 3 firms within a sector \(CR_{3, j, t} \), and the manufacturing-wide sales concentration ratio for the top-3 firms \(CR_{3, t} \):

\[
CR_{3, j, t} = \frac{\sum_{f \in F_{j, t}^{3}} r_{f, j, t}}{\sum_{f \in F_{j, t}} r_{f, j, t}} \quad \text{and} \quad CR_{3, t} = \frac{\sum_{j \in J_{M}} \sum_{f \in F_{j, t}^{3}} r_{f, j, t}}{\sum_{j \in J_{M}} \sum_{f \in F_{j, t}} r_{f, j, t}}
\]

where \(F_{j, t}^{3} \) is the set of top 3 firms in sector \(j \) at time \(t \). The proposition is stated for the top-3 firm share, but there is nothing specific about 3: it could as easily be stated for any set of top firms.

A firm’s role in concentration growth will be captured by two terms: productivity-cum-domestic distortions and export demand. The first term, \(\tilde{a}_{f, j, t} \), combines a firm’s Hicks-neutral productivity \(a_{f, j, t} \) and the relative marginal revenue products of the firm’s inputs:

\[
\tilde{a}_{f, j, t} = a_{f, j, t} \left(\frac{MRPL_{f, j, t}}{mrpL_{f, j, t}} \right)^{\gamma_{L}} \left(\frac{MRPK_{f, j, t}}{mrpK_{f, j, t}} \right)^{\gamma_{K}} \left(\frac{MRPM_{f, j, t}}{mrpM_{f, j, t}} \right)^{\gamma_{M}}.
\]

\(^8\)See, e.g. Burstein and Cravino (2015), Huo et al. (2023a), and di Giovanni et al. (2024).
The marginal revenue product ratios summarize the product and factor market distortions across firms in a sector. Within-sector concentration is shaped by a firm’s \tilde{a}_{fjt} relative to the sectoral average $\tilde{A}_{jt} = (F_{jt})^{\frac{1}{\sigma}} A_{jt}$, defined as sectoral productivity A_{jt} adjusted for the number of firms F_{jt}.

The second term, Φ_{fjt}, captures the role of international trade. It takes the value of 1 for non-exporting firms; otherwise it reflects two distinct channels through which firm-specific export demand shapes sectoral concentration:

$$\Phi_{fjt} = \left(\frac{\tilde{D}^{MA}_{fjt}}{\tilde{D}^{RTS}_{fjt}} \right)^{\frac{1}{1-\gamma_j}}.$$

In turn, \tilde{D}^{MA}_{fjt} captures the importance of export market access for firm size and \tilde{D}^{RTS}_{fjt} captures the extent to which export demand can change marginal costs through returns-to-scale:

$$\tilde{D}^{MA}_{fjt} = \left(\frac{\tilde{a}_{fjt}}{\tilde{A}_{jt}} \right)^{\frac{1}{\sigma-1}} \tilde{D}_{fjt}, \quad \text{and} \quad \tilde{D}^{RTS}_{fjt} = \left(\frac{\tilde{a}_{fjt}}{\tilde{A}_{jt}} \right)^{\frac{1}{\sigma}} \tilde{D}_{fjt}.$$

The importance of each channel reflects firm-specific demand from the rest of the world, $\tilde{D}_{fjt} = \frac{D_{fjt}}{\frac{1}{\gamma_j} \left(\frac{1}{p_{fjt}} \right)^{y_{fjt} - p_{fjt}} E_{fj}}$, and the firm’s differential market power domestically and abroad $\tilde{\mu}_{fjt}/\tilde{\mu}_{fjt}$. Within-sector concentration is shaped by a firm’s Φ_{fjt} compared to the sectoral average Φ_{j}:

$$\Phi_{j} = \left(\sum_{f \in F_{jt}} S_{fjt}^3 \Phi_{fjt}^{1-\sigma} \right)^{\frac{1}{1-\sigma}}.$$

Proposition 2.3. (Concentration Ratio)

(i) Changes in CR^3_{jt} between $t - p$ and t can be decomposed as:

$$\ln \frac{CR^3_{jt}}{CR^3_{j,t-p}} = \frac{1}{\sigma-1} - \gamma_j \left[\sum_{f \in F^3_{jt,t-p}} \omega_{fjt,t-p} \left(\ln \frac{\tilde{a}_{fjt,t-p}/\tilde{A}_{jt,t-p}}{\tilde{a}_{fjt}/\tilde{A}_{jt}} + \ln \frac{\Phi_{fjt}/\Phi_{jt}}{\Phi_{fjt,t-p}/\Phi_{jt,t-p}} \right) \right] - \ln \frac{S^3_{jt}}{S^3_{j,t-p}}.$$

(2.23)

where the weights $\omega_{fjt,t-p}$ are in (A.17), and $S^3_{jt,t-p}$ and S^3_{jt} are the sales shares of the set of firms that are in the top 3 in both t and $t - p$, as in (A.18).
Changes in CR_3^t between $t - p$ and t can be approximated as follows:

$$\ln \frac{CR_3^t}{CR_3^{t-p}} \approx \sum_{j \in J_M} \omega_{j,t-p}^3 \left(\ln \frac{CR_3^{j,t-p}}{CR_3^{j,t-p}} + \ln \frac{S_{jt}}{S_{j,t-p}} \right)$$

$$= \sum_{j \in J_M} \omega_{j,t-p}^3 \left(\frac{1}{\sigma - 1} \gamma_j \left(\sum_{f \in \mathcal{F}_j^{3,cont},t-p} \omega_{f,j,t,p}^3 \left(\ln \frac{\tilde{a}_{fjt}/\tilde{A}_{jt}}{\tilde{a}_{f,j,t-p}/\tilde{A}_{j,t-p}} + \ln \frac{\phi_{fjt}/\Phi_{jt}}{\phi_{f,j,t-p}/\Phi_{j,t-p}} \right) \right) \right)$$

Continuing top 3 firms

$$- \sum_{j \in J_M} \omega_{j,t-p}^3 \ln \frac{S_{jt}^{3,cont}}{S_{j,t-p}^{3,cont}} + \sum_{j \in J_M} \omega_{j,t-p}^3 \ln \frac{S_{jt}}{S_{j,t-p}}, \quad (2.24)$$

Entry/exit

Sectoral reallocation

where $\omega_{j,t-p}^3$ is the share of the top-3 firms in sector j in the combined sales of all top-3 firms from all sectors, as in (A.19).

Proof. See Appendix A. □

Equation (2.23) decomposes a change in concentration into components due to continuing top-3 firms and to the turnover among the top-3 firms. In turn, the continuing firms contribute to growing concentration either through differential growth in $\tilde{a}_{fjt}/\tilde{A}_{jt}$—encompassing both higher productivity and lower domestic distortions—or through differential access to exporting, ϕ_{fjt}/Φ_{jt}. At the same time, between any two periods t and $t - p$ the set of top-3 firms might change. The “entry/exit” term captures the impact of turnover in the top 3 on concentration by comparing the market shares of the firms entering vs. exiting the top 3 between t and $t - p$, in a manner similar to the Feenstra (1994) correction for entry and exit of new product varieties. When the new entrants into the top 3 are, for instance, more productive than the exiters from the top 3, then this turnover term contributes positively to the rise in concentration.

As we aggregate the within-sector changes up to manufacturing-wide concentration in equation (2.24), the decomposition additionally features a sectoral reallocation term. It captures the changes in the aggregate CR_3^t due to changes in sectoral shares either towards or away from sectors with the largest firms economywide. The intersectoral reallocation between periods t and $t - p$ could be due, for instance, to differential productivity trends across sectors, or to changes in the household, producer, or foreign demand for different sectors.

2.4 Concentration and Aggregate Productivity

This section uses a simplified version of the model to state a proposition connecting sectoral concentration and productivity. In particular, it states conditions under which an increase in concentration
following a shock to firm productivity, distortions, or export demand is accompanied by an increase or a decrease in sectoral TFP A_{jt}.

Proposition 2.4. (Concentration and Productivity)

When firms (a) are monopolistically competitive in product markets, (b) competitively hire labor ($\eta \to \infty$), and (c) face export demand that scales with domestic demand (\tilde{D}_{fjt} constant at the firm level), then:

(i) higher productivity a_{fjt} increases a firm’s market share s_{fjt} but lowers sectoral productivity A_{jt} if:

$$\sum_{V \in \{K,L,M\}} \frac{\gamma_j^V MRPV_{jt}}{\gamma_j^V mrpV_{fjt}} \geq \frac{a}{\sigma - 1} \left(1 + \frac{(\phi_{fjt}/\Phi_{jt})^{1-\sigma} - 1}{\sigma} \right),$$

(ii) higher subsidy $\frac{1}{(1+\tau_{fjt})} V = K, L$, increases a firm’s market share s_{fjt} but lowers sectoral productivity A_{jt} if:

$$\sum_{V \in \{K,L,M\}} \frac{\gamma_j^V MRPV_{jt}}{\gamma_j^V mrpV_{fjt}} \geq \frac{a}{\sigma - 1} \left(1 + \frac{(\phi_{fjt}/\Phi_{jt})^{1-\sigma} - 1}{\sigma} \right) - \left(\frac{a}{\sigma - 1} \gamma_j^V - 1 \right) \frac{MRPV_{jt}}{mrpV_{fjt}},$$

(iii) higher export demand \tilde{D}_{fjt} increases a firm’s market share s_{fjt} but lowers sectoral productivity A_{jt} if:

$$\sum_{V \in \{K,L,M\}} \frac{\gamma_j^V MRPV_{jt}}{\gamma_j^V mrpV_{fjt}} \geq 1 + \frac{\gamma_j^V - 1}{\gamma_j^V} \left(\frac{\Phi_{jt}}{\phi_{fjt}} \right)^{a-1} \left(\frac{\phi_{fjt}}{\Phi_{jt}} \right)^{1-\sigma} - 1.$$

Reversing the inequalities in (i)-(iii) defines the conditions under which higher a_{fjt}, $\frac{1}{(1+\tau_{fjt})}$, and \tilde{D}_{fjt} instead simultaneously increase a firm’s market share s_{fjt} and raise sectoral productivity A_{jt}.

Proof. See Appendix A. □

The proposition says that following a shock to a_{fjt}, τ_{fjt}^L, τ_{fjt}^K, or \tilde{D}_{fjt} that increases firm f’s sectoral sales share (and by extension the sector’s concentration), A_{jt} can go up or down depending on parameter values. Essentially, A_{jt} falls if the firm receiving a positive shock is sufficiently subsidized to start with (meaning, it faces sufficiently low τ_{fjt}^L and τ_{fjt}^K).

Perhaps most surprisingly, Proposition 2.4 (i) shows that in a distorted world, a firm’s productivity growth can reduce sectoral TFP. Sectoral TFP reflects both the productivity of firms and the (mis)allocation of resources across all firms. An increase in productivity of a firm that is already too big—i.e. whose inputs are highly subsidized relative to the other firms in the sector—exacerbates misallocation. Sectoral TFP falls when the direct effect of the firm’s own higher productivity is more than offset by the worsened misallocation of inputs across all firms in the sector.
To build intuition, imagine a sector in which only one firm’s inputs are subsidized while all other firms receive no subsidies. What matters for the misallocation of resources is each firm’s subsidy relative to the (weighted) average of all firms’ subsidies. Hence, while in absolute terms most firms receive neither a subsidy nor a tax, in a relative sense most firms are taxed. This dispersion—whereby one firm is relatively subsidized and all others are relatively taxed—leads to misallocation that lowers sectoral TFP. If the subsidized firm becomes more productive, it grows in size and increases the weighted average subsidy of the whole sector. As a result of higher productivity growth by a single firm, all other firms are now relatively more taxed. There is consequently more dispersion in these distortions, increasing misallocation and putting downward pressure on sectoral TFP.

Our proposition shows that there is a threshold level of the firm’s initial relative input distortions above which the misallocation effect dominates the firm productivity effect. This threshold is lower and easier to surpass for a more prominent exporter \(\phi_{fjt} > \Phi_{jt} \), meaning that productivity growth by a heavily subsidized exporter is more likely to be TFP-reducing.

Proposition 2.4 (ii) highlights a similar result when the increase in firm size is driven by a subsidy. If the firm is already sufficiently subsidized relative to its competitors in the sector, then a further subsidy can exacerbate the misallocation of inputs and reduce sectoral TFP. The threshold above which sectoral TFP falls with a higher subsidy is lower and easier to satisfy for a more prominent exporter \(\phi_{fjt} > \Phi_{jt} \). Also, the threshold for a sectoral TFP decline is easier to satisfy for the subsidy shock compared to the productivity shock in Proposition 2.4 (i). In other words, there is an intermediate level of initial distortions under which a higher firm subsidy would lower sectoral TFP while a higher firm productivity would increase sectoral TFP. However, there is a high enough initial subsidy under which both a higher subsidy and higher productivity would lower sectoral TFP while increasing the firm’s market share.

Lastly, Proposition 2.4 (iii) shows that an increase in export demand can similarly benefit a firm’s own market share but with an ambiguous impact on sectoral TFP. When a heavily subsidized firm receives an export demand shock, hiring more inputs to satisfy this new export demand could potentially misallocate inputs in the economy in a way that lowers sectoral TFP. The subsidy threshold for generating this misallocation depends both on the returns to scale and on the firm’s current export status. When returns to scale are constant \(\gamma_j = 1 \), a positive export demand shock to a firm receiving a relative subsidy would lower sectoral TFP regardless of the firm’s current export demand \(\phi_{fjt} \). If returns to scale are somewhat decreasing, as will be the case in our estimation below, then the threshold for a reduction would be higher for a currently prominent exporter and lower for a non-exporter.

Proposition 2.4 highlights that there is no simple one-to-one relationship between concentration and sectoral productivity: increases in concentration can coincide with either higher or lower TFP. Furthermore, different shocks feature different thresholds for when the relationship flips from positive to negative. It is then ultimately an empirical and quantitative question whether the forces behind the
rise in concentration contributed positively or negatively to real income and welfare. We now turn to the quantitative assessment.

3. Data and Model Implementation

This section provides an overview of our firm-level and sectoral data for South Korea, and describes the calibration and estimation of the parameters and shocks. Appendix B elaborates in detail on both the underlying data and the calibration/estimation procedures.

3.1 Data

Our analysis utilizes a novel firm-level panel dataset covering the period from 1972 through 2011. Firm balance sheet data from 1972 to 1982 come from digitizing the historical Annual Reports of Korean Companies published by the Korea Productivity Center. Data for the 1982-2011 period come from KIS-VALUE, which covers firms with assets above 3 billion Korean Won, for whom reporting balance sheet data has been mandatory since the introduction of the 1981 Act on External Audit of Joint-Stock Corporations.\(^9\) We merge these two datasets based on firm names. We treat each firm within a business group (chaebol) as a separate entity.

To ensure the comparability of the two datasets across time, we impose the KIS-VALUE inclusion criterion on the data from the earlier period. That is, while the 1972-1982 data have broader coverage, we include in the firm-level analysis only those firms that would have been required to report their balance sheets had the 1981 Act on External Audit been in force prior to 1982. The resulting dataset comprises of 23,464 unique firms, with the number of firm-year observations increasing from 731 in 1972 to 18,761 in 2011 (Appendix Figure B1).

The dataset has information on sales, exports, fixed assets, employment, wage bill, and firm age. However, wage bill data are only available after 1983, so we use the wage bill data only for the estimation of the production functions, but not for the quantitative exercises.\(^{10}\) While our firm-level data cover most of South Korea’s economic activity, to capture the entire economy we complement the firm-level data with sector-level data from KLEMS and from the IO tables from the Bank of Korea. The sectoral data cover imports, exports, gross output, producer price indices (PPI), capital, and employment. Our final data set consists of 19 sectors. Among these 19 sectors, 11 are in manufacturing and have firm-level information (Appendix Table B1).

Concentration ratios. Figure 1 displays the concentration ratio of the top 3 firms within each sector, defined as the sum of these firms’ sales divided by the total manufacturing gross output. Additionally,
Appendix Figure B2 reports concentration ratios for alternative variables, including domestic sales, exports, fixed assets, and employment. Over time, both domestic sales and export concentration ratios increased, with a more pronounced increase in export concentration. Concentration in employment and fixed assets also increased, although the magnitudes were smaller compared to the increase in the sales concentration ratio. Appendix Figure B3 plots the concentration ratios of the top 1, top 5, and top 10 firms in each sector. Appendix Figure B4 reports the top 3 and top 100 concentration ratios and the Herfindahl index, computed on all manufacturing firms, regardless of sector. These additional exercises confirm the trend increase in concentration.

3.2 Structural Parameters

The model calibration proceeds in 3 steps. First, we externally calibrate a number of parameters, that our data do not allow us to estimate. Second, we estimate and take directly from the Korean data a number of production function and preference parameters. Third, given these parameters, we invert the model to recover the shocks experienced by the Korean firms over the sample period. Table 1 presents the summary of the calibration, with 3 panels corresponding to each calibration step.

Externally calibrated parameters. We externally calibrate the elasticity of substitution between firms σ to 5, which aligns with the existing estimates of 4 from Broda and Weinstein (2006), 5.8 from De Loecker et al. (2021), and 7 from Burstein et al. (2021). We set the elasticity of substitution between Home and Foreign composites ρ to 2 (Boehm et al., 2023). We take these from the literature because—as in most firm-level data sets—we observe firms’ sales but not their prices and quantities separately. Below we check the sensitivity of the results to these parameter values.

We set the across-firm labor supply elasticity $\eta = 4$, the preferred value in Card et al. (2018). We set the across-sector labor supply elasticity θ to 1.89 following Deb et al. (2022) who estimate the elasticity across sectors in the US using state-level variation in corporate income tax rates. We set the Frisch aggregate labor supply elasticity ψ to 0.5, a value advocated by Chetty et al. (2013). We set $\zeta = 0$ implying that there is no loss of resources due to distortions beyond their misallocation effects (see equation A.1).

Parameters estimated or taken from data. We estimate the firm-level production function parameters γ^L_j, γ^K_j, and γ^M_j for each sector. Appendix B.2 lays out the procedure in detail. We derive an estimable regression model by combining the production function with the demand curve faced by the firm (see, e.g. De Loecker, 2011). Our estimation approach is internally consistent with our model, in particular it recognizes that firms charge variable markups. Appendix Table B2 reports

11Our choices for the values of η and θ are based on the studies that employed exogenous variation at the US state or commuting zone levels. We view these setting to be suitable for application to South Korea, as it is a small country comparable in geographic size to the state of Indiana, whose population grew from 35 million at the beginning of the sample to 50 million at the end, on average roughly 1.5 times the population of California over this period. The value of $\eta = 4$ is also broadly consistent with estimates from other recent contributions. Deb et al. (2022) estimate the across-firm labor supply elasticity of 3.1 in the US; Lamadon et al. (2022) 4.6 in the US; Kroft et al. (2023) 4 in the US construction industry; Dhyne et al. (2022) 3.5 in Belgium; and Huneeus et al. (2022) the range of 3–6 in Chile.
<table>
<thead>
<tr>
<th>Param.</th>
<th>Value</th>
<th>Description</th>
<th>Moment</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>5</td>
<td>Elast. subst. firms</td>
<td></td>
<td>Literature</td>
</tr>
<tr>
<td>ρ</td>
<td>2</td>
<td>Elast. subst. Home vs. Foreign</td>
<td></td>
<td>Boehm et al. (2023)</td>
</tr>
<tr>
<td>η</td>
<td>4</td>
<td>Labor supp. elast. firms</td>
<td></td>
<td>Card et al. (2018)</td>
</tr>
<tr>
<td>θ</td>
<td>1.89</td>
<td>Labor supp. elast. sectors</td>
<td></td>
<td>Deb et al. (2022)</td>
</tr>
<tr>
<td>ψ</td>
<td>0.5</td>
<td>Agg. labor supp. elast.</td>
<td></td>
<td>Chetty et al. (2013)</td>
</tr>
<tr>
<td>ζ</td>
<td>0</td>
<td>Gvnt. revenue waste</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Production and Consumption (estimated or data) |
γ^L_j	0.12–0.46, avg. 0.22	Prod. ftn. labor share	eq. (B.1)	Own estimate
γ^K_j	0.07–0.24, avg. 0.14	Prod. ftn. capital share	eq. (B.1)	Own estimate
γ^M_j	0.41–0.65, avg. 0.57	Prod. ftn. material share	eq. (B.1)	Own estimate
γ^i_j	0–0.75	Intermediate input shares	IO tables	IO tables
α_j	0–0.26	Consumption share	IO tables	IO tables

| Shocks (model inversion) |
a_{fjt}	Productivity	Dom. sales sh., eq. (2.12)	Data
D_{fjt}	Foreign demand	Export sh., eq. (2.15)	Data
$1 + \tau^L_{fjt}$	Labor distortion	Emp. sh., eq. (2.13)	Data
$1 + \tau^K_{fjt}$	Capital distortion	Cap. sh., eq. (2.14)	Data
p^M_j	Import price shock	Import shares	Data
ψ^M_t	Labor supp. pref. shock	Working hours per worker	Data

Notes. This table presents the summary of the calibration.

the estimation results. The mean of the returns to scale γ_j is 0.93.\(^{12}\) The mean of the labor share in primary factor costs $\gamma_j^L / (\gamma_j^L + \gamma_j^K)$ is 0.59.

We use the Bank of Korea input-output tables to obtain the final consumption shares α_j and the input-output shares of material inputs γ_j^i. We allow both α_j and γ_j^i vary across years to capture structural change. For commodity and service sectors in which firm-level data are not available, we use the averages of $\gamma_j^L, \gamma_j^K,$ and γ_j^M across manufacturing sectors.

3.3 Inverting the Model to Recover Shocks

To back out the firm-level and aggregate shocks, we proceed in two steps. In our quantification, each firm observed in the data is an object in the model, and we take the model to the data year by year. The first step of the calibration identifies each firm’s productivity, distortions and foreign demands relative to fringe firms. Using data on domestic sales, employment, capital, and export shares, we solve for \{ $a_{fjt}, D_{fjt}, 1 + \tau^L_{fjt}, 1 + \tau^K_{fjt}$ $\}_j \in \mathcal{J}_t$ for each sector and time. Productivity a_{fjt}, labor distortions

\(^{12}\)This value is consistent with the existing estimates in the literature. For example, Basu and Fernald (1997) estimate the returns to scale around 1.1–1.3 using the US sectoral data; Gao and Kehrig (2021) around 0.9–1.0 for manufacturing firms in the US Census; Eslava et al. (2023) around 0.9–1.2 using the Colombian plant data; and Huo et al. (2023a) around 1.05–1.17 for manufacturing sectors using the KLEMS data.
\(\tau^L_{fjt} \) and capital distortions \(\tau^K_{fjt} \) can be identified from equations (2.12), (2.13), and (2.14), after taking into account foreign demand \(D_{fjt} \) based on equation (2.15) and the roles of non-constant returns and variable markups in imposing our theoretical structure.

In the second step—given these identified shocks relative to fringe firms—we pin down fringe firms’ productivity, foreign demands, and distortions \(\{a_{fjt}, D_{fjt}, 1 + \tau^K_{fjt}, 1 + \tau^L_{fjt}\}_{j \in [0,1]} \), the sectoral foreign import price shocks \(\{P^F_{jt}\}_{j \in [0,1]} \), and the aggregate preference shock to the disutility of labor \(\tilde{\phi}_t \). We calibrate fringe firms’ productivity by fitting relative sectoral PPI changes and aggregate real GDP growth. We use changes in PPI (relative to a reference sector) to pin down each sector’s fringe firms’ productivity changes relative to the reference sector. We then pin down the reference sector fringe firms’ productivity using aggregate real GDP growth. We calibrate fringe firms’ foreign demand by fitting aggregate exports. The sectoral import price shocks are identified by sectoral import shares \(\lambda^F_{jt} \). The labor supply shift \(\tilde{\phi}_t \) is pinned down by changes in aggregate hours per worker. To pin down fringe firms’ distortions, we set \(1 + \tau^L_{fjt} \) and \(1 + \tau^K_{fjt} \) to satisfy

\[
\sum_{f \in \mathcal{F}_t} s_{fjt} \left(1/(1 + \tau^L_{fjt}) \tilde{\mu}_{fjt} \tilde{\mu}^L_{fjt} \right) = 1
\]

and

\[
\sum_{f \in \mathcal{F}_t} s_{fjt} \left(1/(1 + \tau^K_{fjt}) \tilde{\mu}_{fjt} \tilde{\mu}^K_{fjt} \right) = 1,
\]

respectively. By doing so, we set the sectoral capital income share \(\sum_{f \in \mathcal{F}_t} \theta k_{fjt}/R_{jt} \) equal to \(\gamma^K_j \), and the sectoral labor income share \(\sum_{f \in \mathcal{F}_t} \omega_{fjt}l_{fjt}/R_{jt} \) to \(\gamma^L_j \). We truncate the top and bottom 1.5% for \(1 + \tau^L_{fjt} \) and \(1 + \tau^K_{fjt} \). Then, we take the 5-year rolling moving averages for the recovered firm-level shocks. We do not have firm-level information in commodity and service sectors, so we assume homogeneous fringe firms in these sectors and their shocks are matched to the sectoral data. We treat trade deficits \(D_t \) as exogenous as standard in the trade literature.

All in all, when all the shocks are fed back into the model, it matches both micro-level objects (firm sales, export, and factor payment shares), and macro-level objects (sectoral output, imports, exports, population adjusted by human capital, and real GDP). Appendix B.3 describes the procedure in detail.

4. Quantitative Results

4.1 Trends in Shocks, Productivity, and Markups

The solid blue lines in Figure 2 display the trends in the 4 shocks since the 1970s. Panel A illustrates the rapid increase in the manufacturing sector productivity. Average productivity is normalized to 1 in 1972. During the sample period, the sales-weighted average manufacturing productivity tripled. Panel B plots the export-weighted average of foreign demand. Its evolution tracks closely the global demand conditions and the real exchange rate movements. Notably, foreign demand dropped in the late 1970s due to the global recession induced by the oil crisis. During the mid-1980s, a depreciated real exchange rate and low oil prices drove an increase in foreign demand. Around 1997, foreign demand surged as the real exchange rate depreciated in the midst of the Asian financial crisis.

13 We obtain data on human capital stock per capita from Lee and Lee (2016).

14 Choi and Shim (2022, 2023) document that these productivity increases were driven by both the adoption of foreign advanced technologies and innovation.
Notes. Panels A and B plot, for productivity and foreign demand shocks, respectively, the sales-weighted average of all firms (solid blue) and the unweighted average for top-3 firms divided by that of other firms (red dashed). Sales-weighted averages of both productivity and foreign demand shocks are normalized to 1 in 1972. Panels C and D plot for the labor and capital distortions, respectively, the standard deviation (solid blue) and the unweighted average of for top-3 firms divided by that of other firms (red dashed). All results are computed within manufacturing sectors and then aggregated by taking the sales-weighted averages across sectors.

Panels C and D report the dispersions in log labor and capital distortions, a widely used measure of the degree of resource misallocation (e.g. Hsieh and Klenow, 2009). We compute standard deviations of firm-level log distortions within sectors and then take sales-weighted averages of these standard deviations across sectors. The dispersion of labor distortions exhibited a declining trend from the 1970s to the early 1990s, before reversing somewhat. The dispersion in capital distortions initially decreased until the mid 1990s but saw a peak around the 1997-1998 Asian financial crisis. This is in line with financial frictions being exacerbated during the crisis (e.g. Midrigan and Xu, 2014). Since then, it has remained elevated, hovering around the levels seen in the early 1970s.
The red dashed lines in Figure 2 plot the divergent evolution of shocks for the top 3 largest firms by sales in each sector compared to the others. We allow for the set of the top 3 firms to vary across years. We calculate the unweighted average of shocks of the top 3 firms, divide it by the unweighted average of shocks of all firms within sectors, and then take the sales-weighted average of these ratios across sectors.\(^{15}\) Panel A shows that the top 3 firms experienced faster productivity growth. In 1972, their average productivity was 2.6 times higher than that of the other firms; by 2011, it had surged to 11 times higher. The top 3 firms’ foreign demands—plotted in panel B—remained stable and similar to those of the other firms until the early 1990s. However, in the mid-1990s, their foreign demands sharply increased around the Asian financial crisis and have remained elevated since. At their 2007 peak, they were 7.7 times higher than those of other firms. Panels C and D display the top 3 firms’ relative labor and capital distortions. In the 1970s, there were drops in both relative distortions, meaning that the top 3 firms were progressively more “favored.” These drops were potentially due to the Heavy and Chemical (HCI) Drive, a large-scale industrial policy that subsidized the heavy manufacturing firms (Choi and Levchenko, 2021; Kim et al., 2021). However, that trend reversed after the HCI Drive ended in 1979. The top 3 firms’ relative distortions fell again from the 1980s to about 2000, and increased from the early 2000s until the end of the sample period. Overall, there is no long-run net change in the top 3 firms’ relative distortions between 1970 and 2010.

The blue lines in Figure 3 plot the aggregate productivity, markup, and markdown (equations 2.21 and 2.22) for the whole economy, including the non-manufacturing sectors. Note that the weights and expressions are based on the theoretical aggregation (Proposition 2.2). The aggregate productivity increased around 100%. However, despite the increased concentration, the aggregate markup and markdown increased by only 4% (from 25.4% to 26.4%). The red dashed lines plot the top 3 firms’ markup and markdown. The top 3 firms’ markups and markdowns are higher than the aggregate throughout, and increased by more than the aggregate, but the change is still modest at 14% (from 28.5% to 32.5%).

Appendix B.4 presents three additional exercises on markups. First, we show the trends in the firms’ markups in the domestic market, and assess the role of import competition in the markup trends. The small increase in aggregate markups is not due to the fact that large firms charge lower markups on exports, and their exports rose in this period. It is also not due to changes in import competition over this period. Rather, it appears that the increase in the top firms’ markups was modest, and when averaged with all the firms in the sector yields an even smaller change in aggregate markups. Second, we adopt a complementary approach and infer markups from cost shares as in De Loecker and Warzynski (2012) and De Loecker et al. (2020). This alternative method shows no increase in aggregate markups over the sample period. Third, we quantify the welfare effects of variable markups by comparing the baseline model to alternatives in which markups and/or markdowns are fixed to the Dixit-Stiglitz values. Existence of variable markups and markdowns reduced the net present value

\(^{15}\)Specifically, we calculate \(\frac{\sum_{\mu \in \mathcal{G}} \frac{X_{fjt}}{\sum_{\mu \in \mathcal{G}} X_{fjt}}}{\sum_{\mu \in \mathcal{G}} X_{fjt}} \) for \(X_{fjt} \in \{ a_{fjt}, D_{fjt}, 1 + \tau^L_{fjt}, 1 + \tau^K_{fjt} \} \).
Notes. The solid blue lines plot the aggregate productivity, markup, and markdown defined in equations (2.21) and (2.22) (left scale). Red dashed lines in Panels B and C plot the markup and markdown of only top-3 firms (right scale).

of welfare by about 1% over this period, relative to the alternative of Dixit-Stiglitz markups.

4.2 Concentration Ratio Decomposition

Table 2 decomposes the observed increase in the aggregate top-3 concentration ratio into the three components following Proposition 2.3(ii) (equation 2.24): relative improvement of firms that were continuously in the top 3, entry and exit margins, and sectoral reallocation. Over the entire 40-year period, 57% of the increase in concentration (9.53 out of 16.79) was driven by the reallocation towards sectors with the largest firms. The remaining 43% (7.25 out of 16.79) is split essentially 50/50 between the better performance by the continuing top 3 firms, and by the extensive margin of new firms entering the top 3.

The long run hides some interesting heterogeneity across periods. Almost half of the cross-sectoral reallocation component (4.44 out of 9.53) came in the first decade on the sample, the period of large-scale industrial policy and dramatic transformation of South Korea into a heavy manufacturing powerhouse. The sectoral reallocation force weakened by the 2000s. The 1970s was also the period responsible for the majority of the churning in and out of the top 3 (3.87 out of the total of 4.01). In fact, in the 1970s the continuing top-3 firms underperformed, contributing negatively to the rise in concentration.

For the rest of the period structural change and new entry into the top 3 become less important. Instead, the continuing top-3 firms enjoy a productivity growth advantage, and an expansion in the relative foreign market access in the 1990s.

16 The changes in the aggregate top-3 concentration ratio in Table 2 do not exactly match Figure 1 because we truncate some outliers and take the 5-year rolling moving averages. Due to approximation errors, we apply the decomposition year-to-year and sum each component over years within each sub-period. Specifically, between $t - p$ and t, we apply the decomposition to $\ln \frac{CR_3^t}{CR_3^{t-1}}$ between $\tau - 1$ and τ, and then sum each component from $t + 1 - p$ to t as $\ln \frac{CR_3^t}{CR_3^{t-1}} = \sum_{\tau=t+1-p}^{t} \ln \frac{CR_3^\tau}{CR_3^{\tau-1}}$.
Table 2: Decomposition of the Aggregate Top-3 Concentration Ratio

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>△ Agg. Top-3 CR (pp)</td>
<td>4.53</td>
<td>2.93</td>
<td>6.90</td>
<td>2.43</td>
<td>16.79</td>
</tr>
<tr>
<td>Within-sector component</td>
<td>0.09</td>
<td>1.40</td>
<td>3.91</td>
<td>2.02</td>
<td>7.25</td>
</tr>
<tr>
<td>Cont. Top 3 – Productivity</td>
<td>-3.83</td>
<td>1.27</td>
<td>1.81</td>
<td>2.83</td>
<td>1.63</td>
</tr>
<tr>
<td>Cont. Top 3 – Exports</td>
<td>0.05</td>
<td>0.37</td>
<td>2.31</td>
<td>-1.05</td>
<td>1.61</td>
</tr>
<tr>
<td>Entry & exit</td>
<td>3.87</td>
<td>-0.24</td>
<td>-0.21</td>
<td>0.24</td>
<td>4.01</td>
</tr>
<tr>
<td>Across-sector component</td>
<td>4.44</td>
<td>1.53</td>
<td>2.99</td>
<td>0.40</td>
<td>9.53</td>
</tr>
</tbody>
</table>

Notes. This table presents the decomposition results of the aggregate top-3 concentration ratio based on equation (2.24). All units are percentage points.

4.3 Contribution of Large Firms to Concentration and Real Income

We next examine the quantitative importance of the differential microeconomic shocks faced by the largest firms for aggregate growth, market concentration, and welfare. We compare the baseline economy with a series of counterfactual economies in which we set various shocks of the top-3 firms to the unweighted average shocks in their sector, while other firms’ shocks remain the same as the baseline. This exercise can be viewed as removing the top-3 firms “granular residual” (Gabaix, 2011). It is motivated by Figure 2, which showed that the top firms experienced systematically different shocks than other firms.

The spirit of the counterfactual exercise is to ask, what would the economy have looked like had the top-3 firms’ productivity, market access, and distortions grown at the same rate as the “typical” firm in the sector? Defining “typical” is not completely straightforward in our dataset, which exhibits a great deal of firm entry over this period. Younger firms are known to grow faster than older ones, and the top-3 firms tend to be older on average. To address this compositional effect, we adopt the procedure detailed in Appendix B.5 to calculate the “typical” firm average to apply to the top-3 firms in the counterfactuals. In a nutshell, it sets the top 3 counterfactual growth rates to the average growth rates of similarly aged firms in the same sector.

Figure 4 presents the quantitative results. Panel A displays results for the top 3 concentration ratio. The light blue solid line displays the concentration ratio in the data. In the data the concentration ratio rose from 11.20% in 1972 to 27.99% in 2011, a 150% increase. The solid green line shows what would happen if all 4 shocks to the top-3 firms were replaced with the corresponding unweighted averages. In this case, the top 3 concentration ratio would have increased only to 14.68% in 2011 – a 31% increase. Thus, in this counterfactual the growth in the concentration ratio is 4.8 times smaller than in the data. The rest of the lines display concentration for one shock at a time. Productivity shocks (dashed-dotted blue line) had the most significant impact on firm concentration, with the
elimination of the top-3 productivity shocks reducing the concentration ratio to 17.96% in 2011. The foreign demand shock had the second largest impact, bringing the concentration ratio down to 23.43% in 2011. In contrast, labor and capital distortions had more limited impacts on concentration.

Panel B shows the real GDP per capita in the counterfactuals relative to that of the baseline. Replacing the top-3 shocks with the averages would have led to a 15% lower real GDP per capita by 2011. The productivity shock emerges as the primary driver, with other shocks playing a more restrained role. It is noteworthy that foreign demand shocks significantly contribute to explaining the concentration ratio, while their impacts on real GDP is much smaller. This discrepancy comes from general equilibrium effects. The reduction in export demand by the top-3 firms results in lower wages, stimulating production by other firms. The decreased production due to lower foreign demand shocks from the top-3 firms is largely offset by the increased production from other firms.

Appendix Figure B9 displays the theoretically-consistent aggregate productivity, markups, and markdowns from Proposition 2.2. Substituting the top-3 shocks with the averages would reduce the aggregate productivity by 15.12%. However, its impacts on the markup and the markdown are essentially negligible, resulting in only about a 0.49% and 0.37% decrease, respectively. Shutting down the top-3 foreign demand increases the markup but decreases the markdown. Higher foreign demand induces the top-3 firms to charge lower markup on average due to a constant markup in the foreign market. Nevertheless, higher foreign demand also increases their demand for labor, which in turn lead to higher employment shares and higher markdown. These results echo the finding in Figure 3 that in spite of the large increase in concentration, the aggregate markup and markdown changes over this 40-year period have been quite small.
Table 3: Welfare Effects of the Top-3 Micro Shocks

<table>
<thead>
<tr>
<th>Shocks</th>
<th>All shocks</th>
<th>Productivity a_{fjt}</th>
<th>Foreign demand D'_{fjt}</th>
<th>Labor distortions $1 + \tau^L_{fjt}$</th>
<th>Capital distortions $1 + \tau^K_{fjt}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>Panel A. Top 3 firms within sectors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ Welfare (%)</td>
<td>-4.10</td>
<td>-2.79</td>
<td>-0.68</td>
<td>-0.69</td>
<td>-0.54</td>
</tr>
<tr>
<td>Panel B. Samsung Electronics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ Welfare (%)</td>
<td>-1.04</td>
<td>-0.96</td>
<td>-0.38</td>
<td>-0.01</td>
<td>-0.12</td>
</tr>
<tr>
<td>Panel C. Hyundai Motors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ Welfare (%)</td>
<td>-0.49</td>
<td>-0.44</td>
<td>-0.08</td>
<td>-0.04</td>
<td>-0.02</td>
</tr>
</tbody>
</table>

Notes. Panels A, B, and C report the welfare effects when we replace sequences of shocks of all the top-3 firms, Samsung Electronics only, and Hyundai Motors only, respectively, with the counterfactual sequences of shocks defined in equation (B.6).

Table 3 reports the welfare effects in these counterfactuals. Welfare is measured in consumption equivalent variation. We compute λ that equates the discounted welfare of the baseline to that of the counterfactual: $\sum_{t=1972}^{2011} \beta^{t-1972} U((1 + \lambda)C_t, L_t) = \sum_{t=1972}^{2011} \beta^{t-1972} U(C^c_t, L^c_t)$, where C^c_t and L^c_t are the counterfactual consumption and labor supply. Replacing all of the top-3 firms’ shocks with the averages would have decreased welfare by 4.10%. Consistent with the findings for the concentration ratio and real GDP, productivity had the largest welfare effects, decreasing welfare by 2.79%. Top-3 foreign demand (-0.68%) and labor (-0.69%) and capital (-0.54%) distortions had quantitatively similar effects. If we replace the top-3’s growth in distortions with the unweighted average, their $1 + \tau^L_{fjt}$ and $1 + \tau^K_{fjt}$ rise, making them face higher costs of labor and capital and therefore decreasing welfare.

The observed concentration ratio decomposition in Table 2 found that the majority of the change in concentration is due to sectoral reallocation. Superficially, it may then appear that most of the changes in concentration are driven by macro shocks, such as structural change or evolving nature of the IO linkages, rather than micro shocks to firms. However, this is not the case: Figure 4 shows that micro shocks to the top-3 firms are responsible for four-fifths of the observed concentration increase. Thus, the micro shocks to the top-3 firms also lead to sectoral reallocation. To illustrate this, we applied the concentration ratio decomposition from Proposition 2.3 to the counterfactual concentration in which all top-3 firms’ shocks are set to sectoral averages (the green line in Figure 4). The sectoral reallocation term in the counterfactual concentration ratio decomposition is 4.95. Thus, the micro shocks to the top firms contributed 4.58 ($= 9.53 - 4.95$) percentage points to the observed rise in concentration. Examining the sectoral reallocation term in (2.24) clarifies how this can happen. Even holding the changes in sectoral shares $\ln(S_{jt}/S_{j,t-p})$ fixed, if the sectors that grow in size have smaller top-3 firms
Notes. This figure displays the top-3 concentration ratios (Panels A and C) and real GDP per capita (B and D), when we replace the sequences of shocks to Samsung Electronics (top half) or Hyundai Motors (bottom half) with the counterfactual sequences of shocks defined in equation (B.6).

(lower ω^3_{j,t-p}), the sectoral reallocation term will get closer to zero. In addition, in the counterfactual there is also less sectoral reallocation towards industries with the largest firms.

Individual firms. The counterfactual exercise above shows that the micro shocks experienced by the top-3 firms had macroeconomic implications. We now push this finding further and examine how individual large firms contributed to the aggregate economy. First, we present results on South Korea’s two largest firms, Samsung Electronics and Hyundai Motors. In 2011, they accounted for 7.1% and 2.5% of total manufacturing gross output, respectively. As in the top-3 counterfactual exercise
Notes. This figure plots the results from the all shocks’ counterfactual to each of the top-3 firms individually. The x-axis shows the top-3 concentration ratio in the baseline minus that in the counterfactual, and the y-axis shows log difference in real GDP in the baseline relative to the counterfactual. We include firms that were top-3 firms for at least 10 years.

above, we replace each of these two firms’ shocks with the sectoral unweighted averages.

Panels A and B of Figure 5 report the results for Samsung Electronics. Restricting Samsung Electronics’ productivity in this way would have reduced concentration. Without Samsung’s differential shocks, the top 3 firms’ concentration ratio would have been 3.5 percentage points lower in 2011. While concentration would have declined, the real GDP in 2011 would have been 6.4% lower relative to the baseline (Panel B), and welfare would have been 1.04% lower (Table 3). Thus, Samsung Electronics alone is responsible for 42% of the GDP and 25% of the welfare impact of the differential trends of the set of the top-3 firms.

Panels C and D of Figure 5 report the same results for Hyundai Motors. Overall, the effects are smaller, reflecting Hyundai’s smaller size compared to Samsung. At the peak of its impact around 2000, removing Hyundai’s relatively favorable shocks would have decreased real GDP by about 1.1%. The Hyundai Motors positive GDP impact partly reversed after 2000. This is due to its relatively poor productivity performance in the 2000s, and to the relatively unfavorable distortions it faced in that period. Setting Hyundai Motors’ distortions to the average level would have actually raised South Korean GDP slightly in the 2000s. Panel C of Table 3 reports that over the whole period, however, the NPV of South Korean welfare would have been 0.49% lower had Hyundai grown like a “typical” firm. Appendix Figure B10 displays the theoretically-consistent aggregate productivity, markups, and markdowns from Proposition 2.2 for the Samsung Electronics and Hyundai Motors counterfactuals.

We next expand the exercise to all the top-3 firms. For each top-3 firm, we replace the growth rate of its four shocks with the sectoral averages. The goal here is to document differences among
the top-3 firms in how much each contributed to both concentration and real GDP. In particular, we want to speak to Proposition 2.4 which shows that any of the 4 shocks that increases concentration can either raise or lower sectoral productivity, depending on parameter values. Figure 6 presents a scatterplot of each firm’s contribution to concentration on the x-axis against its contribution to real GDP on the y-axis. Firms in the first quadrant are what we would call superstars – “super” because they outperformed other firms (thus increasing concentration) and “stars” because they contributed positively to real GDP. Both Samsung Electronics and Hyundai Motors are found in this quadrant. Firms in the second quadrant would be supervillains – as they outperformed other firms, they also lowered GDP. In practice, it turns out that there was only 1 such firm clearly visible in the figure, GS Caltex.

The other quadrants are harder to label. Shocks to Hyundai Oil and Hyundai Heavy metal contributed positively to GDP, but at the same time they meant that these firms underperformed relative to others, and thus contributed to reducing concentration. We might call them “underachieving stars.” The final quadrant – top-3 firms whose shocks reduced both concentration and real GDP – is largely empty.

Most firms by either number or total sales are in the first quadrant, echoing the results for all the top-3 firms combined in Figure 4 and Table 3. Firms in the first quadrant account for 21% of aggregate sales in 2010, compared to 3% in the fourth quadrant (supervillains), 4% second quadrant (underachieving stars) and 1% in the third quadrant.

When would the top-3 firms be supervillains?. Appendix B.6 presents an exercise in which the entire observed increase in the sales concentration is generated by falling relative distortions (ever greater subsidies) facing the top firms. When the rise in concentration is driven purely by distortions, the top-3 firms are indeed villains: making them like the typical firm would increase real GDP dramatically. This is consistent with Proposition 2.4, which shows that lowering distortions (subsidizing) the already highly subsidized firms lowers sectoral TFP. However, engineering the rise in sales concentration solely based on distortions badly misses on these firms’ shares of the wage bill \(s_{Lfjt} \) and capital \(s_{Kfjt} \). Increasing sales concentration purely through \(\tau_{Lfjt} \) and \(\tau_{Kfjt} \) requires very high subsidies on these firms’ factor usage, implying that they employ 65% the labor and capital in the economy by 2010. This is sharply at odds with the data, where the corresponding figures are around 30%.

Are the top-3 firms too big or too small?. Our main results find that faster productivity growth by the top-3 firms contributed positively to GDP and welfare. A distinct question is whether the top firms are too big or too small relative to the efficient allocation, conditional on that productivity. All else equal, they would be inefficiently small either because they face relatively higher exogenous distortions \(\tau_{ijk}^V \gg 0, V = L, K \) for these firms) or because they endogenously reduce their scale to take advantage of their market power. The top firms would be inefficiently large if they face relatively lower distortions \(\tau_{ijk}^V \ll 0 \). To address this question, we contrast the baseline economy with an efficient one in which these two forces are muted. In particular, we construct a hypothetical
economy in which there is no misallocation (no dispersion in τ^K_{ij} and τ^L_{ij}) and in which all firms are monopolistically competitive. We know that when there is no markup dispersion across firms, the monopolistically competitive economy is efficient (Bilbiie et al., 2019; Dhingra and Morrow, 2019). Thus, comparing the baseline to this alternative economy reveals whether the top-3 firms are too small or too big relative to the efficient case. Panel A of Figure B11 presents the scatterplot of the top-3 firms’ observed sectoral sales shares on the x-axis against their sectoral sales shares in the efficient economy in 2011. A firm below the 45-degree line is inefficiently big, above that line, inefficiently small. We see a mixed bag, with roughly similar numbers of firms too big and too small. Panel B of Figure B11 plots the concentration ratio in the data and the concentration ratio in the efficient economy. Except for a brief period in the early 2000s, concentration is actually higher in the efficient economy relative to the data. This means that, as a group, the top-3 firms are inefficiently small, though the difference is minor in the last 15 years or so. All in all, these results imply that the forces that make the top firms inefficiently small—tax-like distortions and exercises of market power—are quantitatively more important than the differential distortions that may make these firms too big.

4.4 Alternative Scenarios and Sensitivity

Simulating responses by other firms. The main counterfactual above changes the top-3 firms’ shocks, while keeping other firms’ shocks as they were in the data. The spirit of the exercise is that of development accounting: we compute how different real GDP and welfare would be in the absence of these firms’ exceptional performance. These numbers should be interpreted as the top-3 firms’ contribution to aggregate real GDP and welfare. Given a plethora of possible effects on other firms that go in potentially opposite directions, the main analysis adopts a conservative approach and changes only the top-3 firms’ shocks.

Having said that, we now perform three exercises that simulate other firms’ responses to the counterfactual growth of the top-3 firms. First, in our main counterfactual the top-3 firms become smaller. This increases the profits of the rest of the (potential) firms in the sector, and thus may elicit new firms to enter or existing firms to upgrade productivity (e.g. Lileeva and Trefler, 2010; Bustos, 2011). To take this force into account, we increase fringe firms’ productivity to keep the unweighted average firm profit at the sector-year level the same as in the baseline. This essentially simulates the free entry condition: as profits increase, new firms will enter until these additional profits have been dissipated.\(^\text{17}\) Panel B in Table 4 displays the results for both the 4-shock counterfactual (left), and the productivity counterfactual (right). Predictably, the fall in real GDP and welfare is now smaller, as the other firms’ increased productivity partly offsets the lower productivity of the top-3, but the net effect goes in the same direction.

\(^{17}\)Since the mass of fringe firms vs. their productivity is indeterminate, increasing their productivity is isomorphic in its impact on prices and welfare to increasing their mass. Thus, this scenario encompasses both entry (higher mass of fringe firms) and productivity upgrading. Note that the fringe firms charge Dixit-Stiglitz markups. Modeling instead entry of large firms with higher markups would produce a strictly lower welfare impact of new entry.
Table 4: Alternative Assumptions on Non-top-3 Firms

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>△ CR in 2011 (pp)</td>
<td>△ Real GDP per capita in 2011 (%)</td>
<td>△ Welfare (%)</td>
<td>△ CR in 2011 (pp)</td>
<td>△ Real GDP per capita in 2011 (%)</td>
<td>△ Welfare (%)</td>
</tr>
<tr>
<td>Panel A. Baseline</td>
<td>-13.31</td>
<td>-15.13</td>
<td>-4.10</td>
<td>-10.03</td>
<td>-13.72</td>
<td>-2.79</td>
</tr>
<tr>
<td>Panel B. Free Entry</td>
<td>-13.86</td>
<td>-6.80</td>
<td>-2.00</td>
<td>-10.56</td>
<td>-2.36</td>
<td>-0.52</td>
</tr>
<tr>
<td>Panel C. Constant Sectoral Productivity</td>
<td>-14.92</td>
<td>-3.24</td>
<td>-0.60</td>
<td>-11.96</td>
<td>-2.95</td>
<td>-0.19</td>
</tr>
</tbody>
</table>

Notes. This table reports the change in the top-3 concentration ratio, real GDP, and welfare from counterfactuals under different assumptions on other firms’ response, described in Section 4.4.

Second, an even stronger version of this type of exercise is to keep sectoral TFP constant in the counterfactual. That is, as we reduce the top-3 firms’ productivity, we raise all firms’ productivity such that A_{jt} remains the same. (It is not clear what economic mechanism would give rise to this constancy, however.) Panel C in Table 4 displays the results. Both real GDP and welfare are still lower in this counterfactual, even though aggregate productivity is constant. This is because the top-3 firms also have the greatest foreign market access. Reallocation productivity away from them and towards the rest of the firms in the sector weakens the correlation between productivity and foreign market access, thereby lowering demand for factors of production and intermediate inputs.

These two scenarios simulate a positive productivity/entry response by other firms to the top-3 firms’ lower productivity. However, there are also mechanisms, such as productivity spillovers, imitation, or agglomeration forces, that would instead lower other firms’ productivity. This is especially relevant for the top-3 firms, as they are the leaders in their sectors, and thus it would be reasonable to expect that other firms would learn from them (see, e.g. Greenstone et al., 2010, Chen and Xu, 2023 for empirical evidence, and Perla and Tonetti, 2014 for a theory of the less productive firms learning from the leading firms). The third scenario incorporates productivity spillover from top-3 firms to other firms based on the estimates in Choi and Shim (2023). Appendix Section B.7 details the procedure. Panel D of Table 4 shows that real GDP and welfare would be even lower than in the main counterfactual, since in this scenario non-top-3 firms’ productivity also falls.

Alternative parameter values. Appendix Table B6 assesses the sensitivity of the main quantitative results to alternative parameter values. For each alternative parameterization, we reestimate produc-
tion function parameters and recalibrate the shocks to exactly fit the baseline scenario to the data. First, in Panel B, instead of the baseline $\sigma = 5$, we use the elasticities from Broda and Weinstein (2006) and estimate production function parameters based on these alternative values. We find larger GDP and welfare effects because some sectors that include large firms, such as Electronics, had lower σ_j, making large firms less substitutable. Panels C through F consider both lower and higher values of σ, ρ, η, θ, and ψ. Panel H tries alternative tax revenue waste parameters ζ. Panel I implements a model with constant returns to scale in each sector. Lastly, Panel J allows for love-of-variety. Specifically, we remove the adjustment by $1/F_j$ in the labor and product aggregators (2.1) and (2.3). The results remain robust to all of these alternative parameterizations.

5. Conclusion

We document a novel fact about South Korea’s growth miracle period: a dramatic increase in manufacturing firm concentration. To understand the driving forces and the macro consequences this trend, we build a quantitative small open economy heterogeneous firm model in which firms have oligopolistic and oligopsonistic market power in domestic goods and labor markets, and are subject to idiosyncratic distortions and foreign demand. The model allows us to disentangle which factors drove the increase in concentration. We find roles for between- and within-sector reallocation, and for productivity and market access in the overall concentration increase. Our counterfactual exercises show that productivity growth of a few large firms had a sizable impact on real GDP and firm concentration. Our findings highlight the importance of large firms’ contributions to economic growth. They also show that an increase in concentration need not be a symptom of economic malaise. Indeed, in South Korea the rise of large firms has been a positive phenomenon: it was driven by productivity growth but accompanied by only a limited increase in markups and markdowns.
References

Han, Jong-Suk and Jong-Wha Lee, “Demographic change, human capital, and economic growth in Korea,” *Japan and the World Economy*, 2020, 53, 100984.

Ma, Yueran, Mengdi Zhang, and Kaspar Zimmermann, “A Century of Rising Business Concentration around the World,” June 2024. mimeo, University of Chicago and Frankfurt School of Finance and Management.

A. PROOFS AND DERIVATIONS

A.1 Equilibrium

Market clearing conditions. Goods market clearing implies

\[\sum_{f \in F} r^H_{fj} = \lambda^H_j \left[\alpha_j(WL + g K + \Pi + T + D) + \int_0^1 \gamma^M_j \left(\sum_{f \in F} \sum_{r \in \{H,F\}} (\mu^e_r)^{-1} r^e_f \right) d_i \right], \]

where \(\Pi = \int_0^1 (\sum_{f \in F} \pi_f) d_i \). The labor and capital market clearing conditions are

\[L = \int_0^1 \sum_{f \in F} l_f d_i \quad \text{and} \quad K = \int_0^1 \sum_{f \in F} k_f d_i. \]

The government budget is balanced:

\[T = (1 - \zeta) \int_0^1 \left(\sum_{f \in F} \tau^L_{fi} w_f l_f + \tau^K_{fi} q_k f_i \right) d_i, \]

where \(\zeta \in [0, 1] \) is a parameter that governs how much resources are wasted due to distortions. Market clearing conditions imply balanced trade.

We formally define an equilibrium as follows.

Definition 1. An equilibrium is a set of prices \(\{p^H_f, p^F_f, w_f\} \) \(f \in F, j \in [0,1] \), \(\{p^H_j, p^F_j, P_j, P^M_j\} \) \(j \in [0,1] \), \(\phi, \varphi \), and goods and factor allocations \(\{y^H_f, y^F_f, l_f, k_f, m_f\} \) \(f \in F, j \in [0,1] \), \(\{Y^H_j, Y^F_j, Y_j, Y^M_j, Y^C_j\} \) \(j, i \in [0,1] \) such that (i) consumers maximize utility; (ii) firms maximize profits; (iii) all goods and factor markets clear; (iv) the government budget is balanced; and (v) trade is balanced.

A.2 Derivations

Derivation of equation (2.7). The Lagrangian for the profit maximization problem is

\[\text{max } y^H_{fj}, y^F_{fj}, l_f, k_f, m_f \quad p^H_f y^H_{fj} + p^F_f y^F_{fj} - (1 + \tau^L_{fi}) w_f l_f - (1 + \tau^K_{fi}) q_k f_i - p^M_j m_f + \lambda (y_f - y^H_f - y^F_f), \]

where \(\lambda \) is the Lagrangian multiplier of the resource constraint. Taking the first order conditions with respect to \(y^H_{fj}, y^F_{fj}, \) and \(l_f \),

\[p^H_f + y^H_{fj} \frac{\partial p^H_f}{\partial y^H_{fj}} = p^H_f \left(1 + \frac{\partial \ln p^H_f}{\partial \ln y^H_{fj}} \right) = \lambda, \quad p^F_f + y^F_{fj} \frac{\partial p^F_f}{\partial y^F_{fj}} = p^F_f \left(1 + \frac{\partial \ln p^F_f}{\partial \ln y^F_{fj}} \right) = \lambda, \]

\[\lambda \frac{\partial y_{fj}}{\partial l_f} = (1 + \tau^L_{fi}) \left(w_f + \frac{\partial w_f}{\partial l_f} l_f \right) = (1 + \tau^L_{fi}) w_f \left(1 + \frac{\partial \ln w_f}{\partial \ln l_f} \right), \]

43
where $\frac{\partial \ln p_{fj}^H}{\partial \ln y_{fj}^H} = -\varepsilon(s_{fj}^H, \lambda_j^H)^{-1}$ and $\frac{\partial \ln p_{fj}^L}{\partial \ln y_{fj}^L} = -\frac{1}{\sigma}$, and $\frac{\partial \ln w_{fj}}{\partial \ln l_{fj}} = \varepsilon^L(s_{fj}^L)$. Combining the above three first order conditions gives the expression in equation (2.7).

Derivation of equation (2.8). We show that ε_{fj} can be written in terms of domestic sales and import shares. The inverse demand function is expressed as $p_{fj}^H = F_j^{-\frac{1}{\gamma}}(y_{fj}^H)^{-\frac{1}{\gamma}}(Y_j^H)^{\frac{1}{\gamma} - \frac{1}{\gamma}}(Y_j)^{\frac{1}{\gamma} - 1}E_j$. From this, we can derive that

$$
\varepsilon_{fj}^{-1} = -\frac{\partial \ln p_{fj}^H}{\partial \ln y_{fj}^H} = \frac{1}{\sigma} + \left(1 - \frac{1}{\sigma}\right) \frac{\partial \ln Y_j^H}{\partial \ln y_{fj}^H} + \left(1 - \frac{1}{\rho}\right) \frac{\partial \ln Y_j}{\partial \ln y_{fj}^H}.
$$

(A.2)

Note that $\frac{\partial \ln Y_j^H}{\partial \ln y_{fj}^H} = s_{fj}^H$ and that $\frac{\partial \ln Y_j}{\partial \ln y_{fj}^H} = \frac{\partial \ln Y_j}{\partial \ln y_{fj}^H}$. Substituting these two expressions into equation (A.2) gives

$$
\varepsilon_{fj}^{-1} = \frac{1}{\sigma} + \left(1 - \frac{1}{\sigma}\right) s_{fj}^H + \left(1 - \frac{1}{\rho}\right) \lambda_j^H s_{fj}^H.
$$

Note that if firms take Y_j as given, $\varepsilon_{fj}^{-1} = \frac{1}{\sigma} + \left(1 - \frac{1}{\sigma}\right) s_{fj}^H$. In a closed economy, $\lambda_j^H = 1$ and therefore $\varepsilon_{fj}^{-1} = \frac{1}{\sigma} + \left(1 - \frac{1}{\sigma}\right) s_{fj}^H$. If $\sigma = \rho$, $\varepsilon_{fj}^{-1} = \frac{1}{\sigma} + \left(1 - \frac{1}{\sigma}\right) \lambda_j^H s_{fj}^H$ holds.

Derivation of equation (2.9). The inverse labor supply function can be written as

$$
w_{fj} = F_j^{-\frac{1}{\eta}}(l_{fj}^H)^{\frac{1}{\eta}} + \frac{1}{\eta} \frac{\partial \ln l_{fj}}{\partial \ln y_{fj}} W,
$$

where firms internalize l_{fj} and L_j and take W as given. From this inverse labor supply function, we can derive that

$$
(\varepsilon_{fj}^L)^{-1} = \frac{\partial \ln w_{fj}}{\partial \ln l_{fj}} = \frac{1}{\eta} + \left(1 - \frac{1}{\eta}\right) \frac{\partial \ln L_j}{\partial \ln l_{fj}}.
$$

Marginal revenue products and prices. The first-order conditions show that the firm trades off the marginal revenue product of any input in each market against the marginal cost of that input. For each $e \in \{H, F\}$:

$$
\begin{align*}
\text{mrp}_{fj}^L &:= \frac{\gamma_{fj}^L p_{fj}^L y_{fj}}{\mu_{fj}^L l_{fj}} = \mu_{fj}^L (1 + \tau_{fj}^L) w_{fj}, \\
\text{mrp}_{fj}^K &:= \frac{\gamma_{fj}^K p_{fj}^K y_{fj}}{\mu_{fj}^K k_{fj}} = (1 + \tau_{fj}^K) q, \\
\text{mrp}_{fj}^M &:= \frac{\gamma_{fj}^M p_{fj}^M y_{fj}}{\mu_{fj}^M m_{fj}} = p_{fj}^M.
\end{align*}
$$

(A.3)
The markup-adjusted marginal revenue products appearing in Proposition 2.2 are:

\[\widetilde{mrp}_{lj} = \tilde{\mu}_{lj}(1 + \tau_{lj})w_{lj}, \]

\[\widetilde{mrp}_{kj} = \tilde{\mu}_{kj}(1 + \tau_{kj})q_{kj}, \]

\[\widetilde{mrp}_{mj} = \tilde{\mu}_{mj}P_{mj}. \]

The sectoral counterparts of these marginal products appearing in Proposition 2.2 are:

\[\widetilde{MRPL}_j = \left[\gamma_j \left(\frac{\sum_{f \in F} s_{lj}}{\sum_{f \in F} \frac{1}{mrp_{lj}}} \right)^{\frac{1}{\gamma_j}} \right]^{-1}, \]

\[\widetilde{MRPK}_j = \left[\gamma_j \left(\frac{\sum_{f \in F} s_{kj}}{\sum_{f \in F} \frac{1}{mrp_{kj}}} \right)^{\frac{1}{\gamma_j}} \right]^{-1}, \]

\[\widetilde{MRPM}_j = \left[\gamma_j \left(\frac{\sum_{f \in F} s_{mj}}{\sum_{f \in F} \frac{1}{mrp_{mj}}} \right)^{\frac{1}{\gamma_j}} \right]^{-1}. \]

To solve for price, using equation (A.4), we obtain

\[l_{lj} = \frac{\gamma_j p_{lj} y_{lj}}{\mu_{lj}(1 + \tau_{lj})w_{lj}}, \quad k_{kj} = \frac{\gamma_j p_{kj} y_{kj}}{\mu_{kj}R(1 + \tau_{kj})}, \quad m_{mj} = \frac{\gamma_j p_{mj} y_{mj}}{P_{mj}}. \]

for \(e \in \{H, F\} \). Substituting the above expressions into production function \(y_{lj} = a_{lj} \mu_{lj}^{\gamma_j} \), we obtain

\[y_{lj} = a_{lj} \left(\frac{w_{lj}}{\gamma_j} \right)^{\gamma_j} \left(\frac{R}{\gamma_j} \right)^{\gamma_j} \left(\frac{P_{mj}}{\gamma_j} \right)^{\gamma_j}. \]

Rearranging the above expression, we obtain

\[p_{lj} = \mu_{lj}^{\gamma_j} \left[\frac{1}{a_{lj}} \left(\frac{mrp_{lj}}{\gamma_j} \right)^{\gamma_j} \left(\frac{mrp_{kj}}{\gamma_j} \right)^{\gamma_j} \left(\frac{mrp_{mj}}{\gamma_j} \right)^{\gamma_j} \right]^{\frac{1}{\gamma_j}} \]

\[= \mu_{lj}^{\gamma_j} \left(\frac{1}{a_{lj}} \right)^{\gamma_j} \left(\frac{\gamma_j}{\gamma_j} \right)^{\gamma_j} \left(\frac{\gamma_j}{\gamma_j} \right)^{\gamma_j} \left(\frac{\gamma_j}{\gamma_j} \right)^{\gamma_j} e \in \{H, F\}. \]

Proof of Proposition 2.1.

Proof. Because price differences in domestic and export markets come from variation in market power,
a share of quantities produced for domestic to total quantities produced can be written as

\[\Lambda_{fj}^H = \frac{y_{fj}^H}{y_{fj}} = \frac{y_{fj}^H}{y_{fj}^H + y_F} = \frac{r_{fj}^H/p_{fj}^H}{r_{fj}^H/p_{fj}^H + r_F/p_F} = \frac{r_{fj}^H/p_{fj}^H}{r_{fj}^H/p_{fj}^H + r_F/p_F}, \]

where \(a_{fj} \) and \(c_{fj} \) are canceled out in the last equality. Using the above expression, total quantity produced can be expressed as

\[y_{fj} = (\Lambda_{fj}^H)^{-1} y_{fj}^H = (1 - \Lambda_{fj}^H)^{-1} y_F. \quad (A.7) \]

We first derive a formula in equation (2.12). Using that \(y_{fj}^H = \frac{1}{\tau_{fj}} (p_{fj}^H)^{\sigma-\rho} P_j^p - 1 E_j \) and equation (A.7), we can rewrite equation (A.6) as

\[p_{fj}^H = \left(\mu_{fj}^H (\mu_{fj}^H (1 + \tau_{fj}^L))^{\frac{\gamma_L}{1}} (1 + \tau_{fj}^K)^{\frac{\gamma_K}{1}} \left(\frac{w_{fj}}{W_j} \right)^{\frac{\gamma_L}{\gamma}} (\Lambda_{fj}^H)^{\frac{\gamma-1}{\gamma}} a_{fj} B_j W_j \right)^{\frac{\gamma}{\gamma-1}}, \quad (A.8) \]

where \(B_j \) is a collection of \(g, F_j, P_j^M, P_H, P_j, E_j \), and the Cobb-Douglas production parameters common across firms within sectors. From the CES property, we can obtain that

\[w_{fj} = \frac{W_j}{L_j} \Rightarrow s_{fj} = \frac{w_{fj} L_j}{W_j L_j} = \frac{w_{fj} L_j}{L_j} \Rightarrow w_{fj} = (s_{fj})^{\frac{1}{1-\sigma}}. \]

Substituting the above expression into equation (A.8),

\[(p_{fj}^H)^{1-\sigma} \propto \left(\mu_{fj}^H (\mu_{fj}^H (1 + \tau_{fj}^L))^{\frac{\gamma_L}{1}} (1 + \tau_{fj}^K)^{\frac{\gamma_K}{1}} (s_{fj}^{L+1})^{\frac{\gamma_L}{\gamma}} a_{fj} (\Lambda_{fj}^H)^{\frac{\gamma-1}{\gamma}} \right)^{-\frac{\gamma}{1-\sigma}}. \quad (A.9) \]

Domestic sales shares are

\[s_{fj}^H = \frac{p_{fj}^H y_{fj}^H}{\sum_{g \in F_j} p_{gj}^H y_{gj}^H} = \frac{\frac{1}{\tau_{fj}} (p_{fj}^H)^{1-\sigma} (P_j^H)^{\sigma-\rho} P_j^p - 1 E_j}{\sum_{g \in F_j} \frac{1}{\tau_{gj}} (p_{gj}^H)^{1-\sigma} (P_j^H)^{\sigma-\rho} P_j^p - 1 E_j} = \frac{(p_{fj}^H)^{1-\sigma}}{\sum_{g \in F_j} (p_{gj}^H)^{1-\sigma}}. \]

Substituting equation (A.9) into the above expression gives the desired results.

Second, we derive the expression for the wage bill shares in equation (2.13). Substituting \(y_{fj} = (\Lambda_{fj}^H)^{-1} y_{fj}^H \) into the FOC with respect to labor \(w_{fj} = (\mu_{fj}^H (\mu_{fj}^H (1 + \tau_{fj}^L))^{1-\sigma} (\Lambda_{fj}^H)^{-1} y_{fj}^H y_{fj} \) gives

\[w_{fj} = \left(\mu_{fj}^H (\mu_{fj}^H (1 + \tau_{fj}^L)) \Lambda_{fj}^H \right)^{-1} y_{fj}^H y_{fj}^H = \left(\mu_{fj}^H (\mu_{fj}^H (1 + \tau_{fj}^L)) \right)^{-1} (\Lambda_{fj}^H)^{-1} y_{fj}^H s_{fj}^H \left(\sum_{g \in F_j} p_{gj}^H y_{gj}^H \right), \]

where the last equality comes from dividing and multiplying \(\sum_{g \in F_j} p_{gj}^H y_{gj}^H \). Substituting the above expression into wage bill shares \(s_{fj}^L = \frac{w_{fj} l_{fj}}{\sum_{g \in F_j} w_{gj} l_{gj}} \) gives the desired result, because \(\sum_{g \in F_j} p_{gj}^H y_{gj}^H \) is canceled out in the numerator and the denominator of the wage bill shares.

Third, we derive the expression for the capital shares in equation (2.14). We proceed similarly to
the wage bill shares. Substituting \(k_{fj} = (\mu^H_{j} + \tau^K_{fj}) - \gamma y^F_{j} \) from the first order conditions and
\(y_{fj} = (\Lambda^H_{fj})^{-1} y^H_{fj} \) into capital shares and dividing both numerator and the denominator by \(\sum_{g \in \mathcal{F}_j} p^H_{gj} y^H_{gj} \),
we obtain that the desired result.

Finally, using equation (A.6) and that
\(r^F_{j} \times \sum_{f \in \mathcal{F}_j} (\mu_{j})^{-1} y^F_{j} \times \sum_{f \in \mathcal{F}_j} p^F_{fj} y^F_{fj} = \gamma^M_{j} (\tilde{\mu}_{j})^{-1} r_{fj} \),
we obtain that \(\sigma^F_{j} \times (\mu_{j} / \mu^F_{j})^{-1} s^F_{j} D_{fj} \) because domestic demand and total exports and gross output are common across firms, which gives the desired results.

\[\square \]

Proof of Proposition 2.2(i). We first derive the expression for the aggregate markup \(M_{j} \). From the FOC with respect to material inputs (equation A.3),

\[
p^M_{j} m_{fj} = (\mu^H_{j})^{-1} \gamma^M_{j} p^H_{fj} y^f_{fj} = (\mu^H_{j})^{-1} \gamma^M_{j} \times \frac{p^H_{fj} y^H_{fj}}{p^H_{fj} y^f_{fj} + p^F_{fj} y^F_{fj}} \times (p^H_{fj} y^H_{fj} + p^F_{fj} y^F_{fj}) = \gamma^M_{j} (\tilde{\mu}_{j})^{-1} r_{fj},
\]

where the second equality comes from the fact that

\[
(\mu^H_{j} y^H_{fj} / (p^H_{fj} y^H_{fj} + p^F_{fj} y^F_{fj}))^{-1} = \mu^H_{j} y^H_{fj} / (\mu^H_{j} y^H_{fj} + \mu^F_{j} y^F_{fj})^{-1} = \mu^H_{j} y^H_{fj} / (\mu^H_{j} y^H_{fj} + \mu^F_{j} y^F_{fj}).
\]

(A.10)

From the above expressions, we obtain that

\[
p^M_{j} M_{j} = \sum_{f \in \mathcal{F}_j} p^M_{j} m_{fj} = \gamma^M_{j} \left(\sum_{f \in \mathcal{F}_j} (\tilde{\mu}_{j})^{-1} r_{fj} \right) R_j = \gamma^M_{j} \left(\sum_{f \in \mathcal{F}_j} (\tilde{\mu}_{j})^{-1} s_{fj} \right) R_j.
\]

Plugging in the above expression into equation 2.17, we obtain that \(M_{j} = (\sum_{f \in \mathcal{F}_j} (\tilde{\mu}_{j})^{-1} s_{fj})^{-1} \).

We now turn our focus on the expression for sectoral markup \(M^L_{j} \). From the FOC with respect to labor,

\[
(1 + \tau^L_{fj}) w_{fj} l_{fj} = (\mu^L_{j} y^L_{j})^{-1} \gamma^L_{j} p^H_{fj} y^f_{fj} = (\tilde{\mu}_{j} \mu^L_{j})^{-1} \gamma^L_{j} r_{fj} = (\tilde{\mu}_{j} \mu^L_{j})^{-1} \gamma^L_{j} s_{fj} R_j,
\]

where the second equality holds due to equation (A.10) and the third equality comes from the fact that \(s_{fj} = r_{fj} / R_j \). Summing both sides across firms,

\[
\sum_{f \in \mathcal{F}_j} (1 + \tau^L_{fj}) w_{fj} l_{fj} = \gamma^L_{j} \left(\sum_{f \in \mathcal{F}_j} \tilde{\mu}_{j} \mu^L_{j}^{-1} s_{fj} \right) R_j = \gamma^L_{j} \left(\sum_{f \in \mathcal{F}_j} \tilde{\mu}_{j} \mu^L_{j}^{-1} s_{fj} \right) R_j,
\]

where the equality comes from that \(\sum_{f \in \mathcal{F}_j} w_{fj} l_{fj} = W_j L_j \). Plugging the above expression into the definition of the aggregate markup (equation (2.17)), we obtain the desired results.

\[\square \]

Proof of Proposition 2.2(ii). We first show that \(A_j = \left[\sum_{f \in \mathcal{F}_j} F_{fj}^{-1} \left(a_{fj} TFP_{fj} \right)^{\sigma-1} \right]^{\frac{1}{\sigma}} \) holds. By definition, because \(R_j = PPI_j \times Y^f_j, TFP_{j} = PPI_j \times A_j \) holds. Similarly, at firm-level, because \(r_{fj} = \bar{p}_{fj} y_{fj}, \)

...
where the second equality comes from that \(\tilde{p}_{fj} = tfpr_{fj}/a_{fj} \). From these relationships,
\[
A_j = TFPR_j(PPI_j)^{-1} = TFPR_j \left(\sum_{f \in \mathcal{F}_j} F_j^{-1} \tilde{p}_{fj}^{1-\eta} \right)^{1/\eta} = \left(\sum_{f \in \mathcal{F}_j} F_j^{-1} \left(tfpr_{fj} \right)^{1-\eta} \right)^{1/\eta},
\]
where the second equality comes from the fact that \(\tilde{p}_{fj} = tfpr_{fj}/a_{fj} \).

Next, we turn our focus on \(tfpr_{fj} \). From the FOC with respect to labor, we obtain that
\[
\left(\gamma^L_j \right)^{-1} \mu_H^H \mu^L_{fj} (1 + \tau_{fj}^L) \omega_{fj} l_{fj} = p_f^H y_f j = \frac{p_f^H y_f j}{p_f^H y_f j + p_f^F y_f j} r_f j.
\]
Using equation (A.10), we can re-express as
\[
l_{fj} = \gamma^L_j \frac{r_f j}{\tilde{p}_{fj} \mu_f j (1 + \tau_{fj}^L) (s_f j)^{1/\eta} w_f j}.
\]
(A.11)
Similarly for other inputs, we obtain the following relationships
\[
k_{fj} = \gamma^K_j \frac{r_f j}{\tilde{p}_{fj} (1 + \tau_{fj}^K) q} \quad \text{and} \quad m_{fj} = \gamma^M_j \frac{r_f j}{\tilde{p}_{fj} p^M_j}.
\]
(A.12)
Substituting the above three expressions into the definition of \(tfpr_{fj} = \frac{r_f j}{l_{fj}^{1-\gamma} k_{fj}^{1-\gamma} m_{fj}^{1-\gamma}} \), we obtain that
\[
\begin{align*}
tfpr_{fj} &= r_f j^{1-\gamma} \left((\tilde{p}_{fj} (1 + \tau_{fj}^L) \mu_f j (s_f j)^{1/\eta} W_f j) \right) \gamma^L_j \left((\tilde{p}_{fj} (1 + \tau_{fj}^K) \mu_f j (s_f j)^{1/\eta} W_f j) \right) \gamma^K_j \left(\tilde{p}_{fj} \right) \gamma^M_j \times (W_f j / \gamma^L_j)^{1/\eta} (q / \gamma^K_j)^{1/\eta} (P^M j / \gamma^M_j)^{1/\eta}.
\end{align*}
\]
(A.13)
Lastly, we turn our focus on TFPRj. From equation (A.11) and \(L_j = (F_j^{1/\eta} \sum_{f \in \mathcal{F}_j} l_{fj}^{\eta+1})^{\eta/\eta+1} \),
\[
L_j = \gamma^L_j \left(F_j^{1/\eta} \sum_{f \in \mathcal{F}_j} \left(r_{fj} (\tilde{p}_{fj} \mu_f j (1 + \tau_{fj}^L) (s_f j)^{1/\eta} W_f j) \right)^{\eta+1} \right)^{\eta/\eta+1} \]
\[
= \gamma^L_j \frac{1}{\eta} \left(F_j^{1/\eta} \sum_{f \in \mathcal{F}_j} \left(s_{fj} (\tilde{p}_{fj} \mu_f j (1 + \tau_{fj}^K) (s_f j)^{1/\eta} W_f j) \right)^{\eta+1} \right)^{\eta/\eta+1} R_j,
\]
(A.14)
where the second equality comes from that \(s_{fj} = r_{fj}/R_j \). Similarly, we can obtain
\[
K_j = \gamma^K_j \left(\sum_{f \in \mathcal{F}_j} s_{fj} (\tilde{p}_{fj} (1 + \tau_{fj}^K) R_f j^{-1}) \right) R_j
\]
(A.15)
and

\[M_j = \gamma_j^M \left(\sum_{f \in F_j} s_{fj}(\bar{m}_{fj} P_j^M)^{-1} \right) R_j \]

(A.16)

Substituting equations (A.14), (A.15), and (A.16) into \(\text{TFPR}_j = \frac{R_j}{L_j v^K_j M_j^T} \), we obtain

\[\text{TFPR}_j = R_j^{1-\gamma_j} \left[\frac{\rho_j^T}{\rho_j^T} \sum_{f \in F_j} \left(s_{fj}(\bar{m}_{fj} (1 + \tau_{fj}^L) \mu_{fj}^L (s_{fj}^L)^{1/\gamma_j} \right)^{-1} \right]^{-\gamma_j/\mu_j} \]

\[\times \left[\sum_{f \in F_j} s_{fj}(\bar{m}_{fj} (1 + \tau_{fj}^K)^{-1} \right]^{-\gamma_j^K} \left[\sum_{f \in F_j} s_{fj}(\bar{m}_{fj})^{-1} \right]^{-\gamma_j^M} \times (W_j / \gamma_j^L \gamma_j^K (P_j^M / \gamma_j^M)^{\gamma_j^M}, \]

which can be expressed as

\[\text{TFPR}_j = R_j^{1-\gamma_j} \frac{\gamma_j^H}{MRPL_j^H} \frac{\gamma_j^K}{MRPK_j^K} \frac{\gamma_j^M}{MRPM_j^M}. \]

Weights definitions for Proposition 2.3. The weights \(\alpha_{fjt, t-p} \) are defined as

\[\alpha_{fjt, t-p} = \frac{s_{fjt}^{3, \text{cont}} - s_{fjt, t-p}^{3, \text{cont}}}{\ln s_{fjt}^{3, \text{cont}} - \ln s_{fjt, t-p}^{3, \text{cont}}}, \quad \text{where} \quad s_{fjt}^{3, \text{cont}} = \frac{r_{fjt}}{\sum_{g \in F_j^{3, \text{cont}}} r_{fgt}^\tilde{t}}, \quad \tilde{t} \in \{t-p, t\}. \]

(A.17)

The \(s_{j, t-p}^{3, \text{cont}} \) and \(s_{jt}^{3, \text{cont}} \) are defined to be the sales shares of the set of firms \(F_{j, t-p}^{3, \text{cont}} = F_{jt}^{3, \text{cont}} \cap F_{j, t-p}^{3, \text{cont}} \)

that are in the top 3 in both \(t \) and \(t-p \):

\[s_{j, t-p}^{3, \text{cont}} = \frac{\sum_{f \in F_j^{3, \text{cont}}} r_{fjt} - p_{fjt}^{3, \text{cont}}}{\sum_{f \in F_j^{3, \text{cont}}} r_{fjt}} \quad \text{and} \quad s_{jt}^{3, \text{cont}} = \frac{\sum_{f \in F_j^{3, \text{cont}}} r_{fjt} - p_{fjt}^{3, \text{cont}}}{\sum_{f \in F_j^{3, \text{cont}}} r_{fjt}}. \]

(A.18)

The weight \(\alpha_{j, t-p}^{3} \) is defined as:

\[\alpha_{j, t-p}^{3} = \frac{\sum_{f \in F_{j, t-p}^{3}} r_{fjt} - p_{fjt}^{3, \text{cont}}}{\sum_{f \in F_{j, t-p}^{3}} r_{fjt}}. \]

(A.19)

Proof of Proposition 2.3(i). First, we show that \(s_{fj} = \frac{(\bar{a}_{fj} \phi_{fj})^{-1/\gamma_j}}{\sum_{g \in F_j} (\bar{a}_{fg} \phi_{fg})^{-1/\gamma_j}} \) holds. We omit the subscript \(t \) for notational convenience and introduce it when necessary. Note that

\[r_{fj} = p_{fj}^H y_{fj}^H + p_{fj} F y_{fj}^F = (p_{fj}^H)^{1-\sigma} (p_{fj}^H)^{-\sigma} p_{fj}^{\sigma-1} E_j + (p_{fj}^F)^{1-\sigma} D_j \sigma (p_{fj}^H)^{1-\sigma} + (p_{fj}^F)^{1-\sigma} D_j, \]

49
where \(\tilde{D}_{fj} = D_{fj} / (P_j^H)^{\alpha - \rho} P_j^{\rho - 1} E_j \) is firm-specific foreign demand relative to domestic demand. Note that domestic demand \((P_j^H)^{\alpha - \rho} P_j^{\rho - 1} E_j\) is common across firms.

Using equation (A.6) and the fact that \(p_{fj}^H \) and \(p_{fj}^F \) only differ in \(\mu_{fj}^H \) and \(\mu_{fj}^F \) we obtain

\[
r_{fj} \propto \left(a_{fj} \frac{\gamma_j^{\frac{1}{\gamma}}}{mrpl_{fj}^{\frac{1}{\gamma}}} \frac{\gamma_j^{\frac{1}{\gamma}}}{mpk_{fj}^{\frac{1}{\gamma}}} \frac{\gamma_j^{\frac{1}{\gamma}}}{mrm_{fj}^{\frac{1}{\gamma}}} \frac{1}{y_{fj}^{\frac{1}{\gamma}} + \tilde{D}_{fj}} \right)^{1-\sigma} \tilde{D}_{fj}^{x,MA}. \tag{A.20}
\]

Note that \(y_{fj} \) can be expressed as \(y_{fj} = (p_{fj}^H)^{-\alpha} (p_{fj}^H)^{\alpha - \rho} P_j^{\rho - 1} E_j + (p_{fj}^F)^{-\sigma} \tilde{D}_{fj} \) and we can obtain that

\[
y_{fj} \propto \left(a_{fj} \frac{\gamma_j^{\frac{1}{\gamma}}}{mrpl_{fj}^{\frac{1}{\gamma}}} \frac{\gamma_j^{\frac{1}{\gamma}}}{mpk_{fj}^{\frac{1}{\gamma}}} \frac{\gamma_j^{\frac{1}{\gamma}}}{mrm_{fj}^{\frac{1}{\gamma}}} \frac{1}{y_{fj}^{\frac{1}{\gamma}} + \tilde{D}_{fj}} \right)^{-\sigma} \tilde{D}_{fj}^{x,RTS}.
\]

Substituting equation (A.21) into equation (A.20), we obtain that

\[
r_{fj} \propto \left(a_{fj} \frac{\gamma_j^{\frac{1}{\gamma}}}{mrpl_{fj}^{\frac{1}{\gamma}}} \frac{\gamma_j^{\frac{1}{\gamma}}}{mpk_{fj}^{\frac{1}{\gamma}}} \frac{\gamma_j^{\frac{1}{\gamma}}}{mrm_{fj}^{\frac{1}{\gamma}}} \frac{1}{\phi_{fj}^{\frac{1}{\gamma}}} \right)^{\frac{1}{\gamma}} \frac{1}{\Omega_j} \propto (\tilde{a}_{fj} \phi_{fj})^{\frac{1}{\gamma}}.
\]

Note that the second relationship holds due to the fact that \(MRPL_j, MRPK_j, \) and \(MRPM_j \) are common across firms within sectors. From the above expression, we can express firm sales shares as

\[
s_{fj} = \frac{(\tilde{a}_{fj} \phi_{fj})^{\frac{1}{\gamma}}}{\Omega_j} = \frac{(\tilde{a}_{fj} \phi_{fj})^{\frac{1}{\gamma}}}{\Omega_j}, \tag{A.22}
\]

where \(\Omega_j \) denote the sector-wide denominator.

In the next step, we show that \(\Omega_j = (A_j \Phi_j)^{\frac{1}{\gamma}} \).

\[
s_{fj} = (\tilde{a}_{fj} \phi_{fj})^{\frac{1}{\gamma}} \Omega_j^{-1} \Rightarrow s_{fj} = \frac{(\tilde{a}_{fj} \phi_{fj})^{\frac{1}{\gamma}}}{s_{fj}^{\frac{1}{\gamma}}} s_{fj}^{\frac{1}{\gamma}} \Omega_j^{-1}
\]

\[
\Rightarrow s_{fj}^{\frac{1}{\gamma}} = \left(a_{fj} \frac{TFPR_j}{\text{spr}_{fj}} \right)^{\frac{1}{\gamma}} \Omega_j^{-(\frac{1}{\gamma} - \gamma)}
\]

\[
\Rightarrow (a_{fj} \frac{TFPR_j}{\text{spr}_{fj}})^{\frac{1}{\gamma}} = s_{fj}^{\frac{1}{\gamma}} \phi_{fj}^{\frac{1}{\gamma}} \Omega_j^{-(\frac{1}{\gamma} - \gamma)}.
\]
Summing over both sides across firms,

\[
\sum_{f \in F_{jt}} \left(a_{fj} \frac{TFPR_{fj}}{tpf_{fj}} \right)^{\sigma-1} = \sum_{f \in F_{jt}} s_{fj} \phi_{fj}^{1-\sigma} \Omega_j^{(\frac{\sigma}{\sigma-1} - \gamma_j)(\sigma-1)}
\]

\[
\Rightarrow \left[\sum_{f \in F_{jt}} \left(a_{fj} \frac{TFPR_{fj}}{tpf_{fj}} \right)^{\sigma-1} \right]^{\frac{1}{1-\sigma-1}} = \left(\sum_{f \in F_{jt}} s_{fj} \phi_{fj}^{1-\sigma} \right)^{\frac{1}{\sigma-1}} \Omega_j^{\left(\frac{\sigma}{\sigma-1} - \gamma_j\right)},
\]

which gives \(\Omega_j^{\left(\frac{\sigma}{\sigma-1} - \gamma_j\right)} = \tilde{A}_j \Phi_j \).

Now, we introduce the subscript \(t \) to denote for year \(t \). Substituting \(\Omega_j^{\left(\frac{\sigma}{\sigma-1} - \gamma_j\right)} = \tilde{A}_j \Phi_j \) into equation (A.22), taking logs, and differencing between \(t - p \) and \(t \), we obtain that

\[
\ln \frac{s_{fj,t-p}}{s_{fj,t-p}} = \frac{1}{\sigma-1-\gamma_j} \left(\ln \frac{\tilde{a}_{fj,\tilde{A}_j}}{\tilde{a}_{fj,t-p,\tilde{A}_j,t-p}} + \ln \frac{\phi_{fj,t-p,\Phi_j}}{\phi_{fj,t-p,\Phi_j}} \right). \quad (A.23)
\]

Note that \(s_{fj} \) and \(s_{fj,t-p} \) can be re-expressed as

\[
s_{fj} = \frac{r_{fj,t}}{\sum_{g \in \Gamma_p^{\text{cont}} \cap F_{jt}} r_{gj,t}} \sum_{f \in \Gamma_p^{\text{cont}} \cap F_{jt}} r_{fj,t} \sum_{f \in \Gamma_p^{\text{cont}} \cap F_{jt}} r_{fj,t} = s_{fj}^{\text{cont}} S_{fj}^{3,\text{cont}} S_{fj}^{3} \quad (A.24)
\]

\[
s_{fj,t-p} = \frac{r_{fj,t-p}}{\sum_{g \in \Gamma_p^{\text{cont}} \cap F_{jt}} r_{gj,t-p}} \sum_{f \in \Gamma_p^{\text{cont}} \cap F_{jt}} r_{fj,t-p} \sum_{f \in \Gamma_p^{\text{cont}} \cap F_{jt}} r_{fj,t-p} = s_{fj,t-p}^{3,\text{cont}} S_{fj,t-p}^{3,\text{cont}} S_{fj,t-p}^{3} \quad (A.25)
\]

Define

\[
\omega_{fj,t-p} = \frac{\ln s_{fj,t-p}^{3,\text{cont}} - \ln s_{fj,t-p}^{3}}{\ln s_{fj,t-p}^{3,\text{cont}} - \ln s_{fj,t-p}^{3,\text{cont}}}
\]

We sum across continuing top-3 firms of both sides of equation (A.23) using the weights:

\[
\sum_{f \in \Gamma_p^{\text{cont}} \cap F_{jt}} \omega_{fj,t-p} \ln \frac{s_{fj,t-p}}{s_{fj,t-p}} = \frac{1}{\sigma-1-\gamma_j} \sum_{f \in \Gamma_p^{\text{cont}} \cap F_{jt}} \left(\ln \frac{\tilde{a}_{fj,\tilde{A}_j}}{\tilde{a}_{fj,t-p,\tilde{A}_j,t-p}} + \ln \frac{\phi_{fj,t-p,\Phi_j}}{\phi_{fj,t-p,\Phi_j}} \right). \quad (A.26)
\]

Note that the left hand side can be expressed as

\[
\sum_{f \in \Gamma_p^{\text{cont}} \cap F_{jt}} \omega_{fj,t-p} \ln \frac{s_{fj,t-p}}{s_{fj,t-p}} = \sum_{f \in \Gamma_p^{\text{cont}} \cap F_{jt}} \omega_{fj,t-p} \ln \frac{s_{fj,t-p}^{3,\text{cont}}}{s_{fj,t-p}^{3,\text{cont}}} + \ln \frac{S_{fj,t-p}^{3,\text{cont}} S_{fj,t-p}^{3}}{S_{fj,t-p}^{3,\text{cont}} S_{fj,t-p}^{3}} \quad (A.27)
\]

51
Combining equations (A.26) and (A.27), we can obtain the desired result. □

Proof of Proposition 2.3(ii). \(CR_3 = \sum_{j \in J_M} \sum_{f \in F_{j,t}} f_{jt} \) can be written as \(CR_3 = \sum_{j \in J_M} CR_3^{j,t} S_{jt} \). From this,

\[
\frac{CR_3}{CR_3^{1-p}} = \sum_{j \in J_M} \alpha_j^{3,t} \frac{CR_3^{j,t}}{CR_3^{j,t,p}} \frac{S_{jt}}{S_{j,t-p}}.
\]

Log approximating the above equation, we obtain that

\[
\ln \frac{CR_3}{CR_3^{1-p}} \approx \sum_{j \in J_M} \alpha_j^{3,t-p} \left(\ln \frac{CR_3^{j,t}}{CR_3^{j,t,p}} + \ln \frac{S_{jt}}{S_{j,t-p}} \right).
\]

Substituting equation (2.23) into the above expression gives equation (2.24). □

Proof of Proposition 2.4. For analytical tractability, we impose three assumptions: (i) firms are monopolistically competitive in the goods markets, so that markups are constant; (ii) factor markets are perfectly competitive \((\eta \rightarrow \infty)\), and (iii) firm export demand scales with domestic demand: \(D_{fj} = d_f \times D_H \), where \(D_H = \frac{1}{\gamma_f} (P_H)^{\alpha_p - 1} (P) \) is Home market size and \(d_f \) is an exogenous shifter that makes firm \(f \)'s export demand constant proportionally to \(D_H \). Below we explain the implications of the third assumption. We drop the time subscripts in the proof as it creates no confusion.

Firm sales shares can be expressed as

\[
s_{fj} = \frac{\hat{a}_{fj} \hat{\phi}_{fj}}{\sum_{f \in F} \hat{a}_{fj} \hat{\phi}_{fj}}, \quad \hat{a}_{fj} = (a_{fj} m r p l_{fj} m r p k_{fj} m r p m_{fj})^{\frac{1}{\sigma - 1 - \gamma_f}}, \quad \hat{\phi}_{fj} = \phi_{fj}^{\frac{\sigma - 1}{\sigma - 1 - \gamma_f}}. \tag{A.28}
\]

Totally differentiating \(\hat{a}_{fj} \) and \(\hat{\phi}_{fj} \) in equation (A.28),

\[
d \ln \hat{a}_{fj} = \frac{1}{\sigma - 1 - \gamma_f} (d \ln a_{fj} - \sum_{v \in \{l, k, m\}} \gamma_v m r p v_{fj}), \quad d \ln \hat{\phi}_{fj} = \frac{1}{\sigma - 1 - \gamma_f} d \ln \phi_{fj}. \tag{A.29}
\]

Note that under constant markups and markdowns due to monopolistic competition in product markets and perfect competition in factor markets,

\[
d \ln m r p l_{fj} = d \ln (1 + \tau_{fj}^l), \quad d \ln m r p k_{fj} = d \ln (1 + \tau_{fj}^k), \quad d \ln m r p m_{fj} = 1. \tag{A.30}
\]
Aggregate productivity can be expressed as

\[A_j = \left[\frac{1}{F_j} \sum_{f \in F_j} \left(a_{fj} \frac{TFPR_j}{lfpf_{fj}} \right)^{\alpha - 1} \right]^{-\frac{1}{\alpha - 1}} \]

\[= \left[\frac{1}{F_j} \sum_{f \in F_j} \left(a_{fj} s_{fj}^{\gamma_j - 1} \text{mrpl}_{fj}^{-\gamma_j} \text{mrpk}_{fj}^{-\gamma_j} \text{mrm}_{fj}^{-\gamma_j} \right)^{\alpha - 1} \right]^{-\frac{1}{\alpha - 1}} \]

\[\times MRPL_j^{\gamma_j} \text{MRPK}_j^{\gamma_j} \text{MRPM}_j^{\gamma_j} \]

\[= \left[\frac{1}{F_j} \sum_{f \in F_j} \left(a_{fj} s_{fj}^{\gamma_j - 1} \right)^{\alpha - 1} \right]^{-\frac{1}{\alpha - 1}} \]

\[\times MRPL_j^{\gamma_j} \text{MRPK}_j^{\gamma_j} \text{MRPM}_j^{\gamma_j} \]

\[= \left(\sum_{f \in F_j} \hat{a}_{fj} \hat{\phi}_{fj} \right)^{1 - \gamma_j} \left(\frac{1}{F_j} \sum_{f \in F_j} \phi_{fj}^{(\alpha - 1)(\gamma_j - 1)} \hat{a}_{fj} \right) \]

\[= \left(\sum_{f \in F_j} \hat{a}_{fj} \hat{\phi}_{fj} \right) \left(\frac{1}{F_j} \sum_{f \in F_j} \phi_{fj}^{(\alpha - 1)(\gamma_j - 1)} \hat{a}_{fj} \right)^{\frac{1}{1 - \alpha}} \]

\[\times \left(\sum_{f \in F_j} \hat{a}_{fj} \hat{\phi}_{fj} \frac{1}{\text{mrpl}_{fj}} \right)^{-\gamma_j} \left(\sum_{f \in F_j} \hat{a}_{fj} \hat{\phi}_{fj} \frac{1}{\text{mrpk}_{fj}} \right)^{-\gamma_j} \left(\sum_{f \in F_j} \hat{a}_{fj} \hat{\phi}_{fj} \frac{1}{\text{mrm}_{fj}} \right)^{-\gamma_j} \]

(A.31)

where the third and fourth lines come from the definition of \(\hat{a}_{fj} \) and the relationship between \(s_{fj} \) and \(\hat{a}_{fj} \) in equation (A.28), respectively. The fifth line comes from equation (A.28) and the fact that under perfect competition in factor markets,

\[\text{MRPV}_j = \left(\sum_{f \in F_j} s_{fj} \frac{1}{\text{mrpv}_{fj}} \right)^{-1}, \quad V \in \{ L, K, M \}. \]

We examine each term in equation (A.31). First, totally differentiating \(\sum_{f \in F_j} \hat{a}_{fj} \hat{\phi}_{fj} \),

\[d \ln \left(\sum_{f \in F_j} \hat{a}_{fj} \hat{\phi}_{fj} \right) = \sum_{f \in F_j} s_{fj} \left(d \ln \hat{a}_{fj} + d \ln \hat{\phi}_{fj} \right). \]

Totally differentiating \(\left(\frac{1}{F_j} \sum_{f \in F_j} \phi_{fj}^{(\alpha - 1)(\gamma_j - 1)} \hat{a}_{fj} \right)^{\frac{1}{\alpha - 1}} \),

\[d \ln \left(\frac{1}{F_j} \sum_{f \in F_j} \phi_{fj}^{(\alpha - 1)(\gamma_j - 1)} \hat{a}_{fj} \right)^{\frac{1}{\alpha - 1}} = \sum_{f \in F_j} \phi_{fj}^{(\alpha - 1)(\gamma_j - 1)} \hat{a}_{fj} \left(\frac{1}{\alpha - 1} d \ln \hat{a}_{fj} + (\gamma_j - 1) d \ln \hat{\phi}_{fj} \right) \]

\[= \sum_{f \in F_j} s_{fj} \left(\phi_{fj} \Phi_j \right)^{1 - \sigma} \left(\frac{1}{\sigma - 1} d \ln \hat{a}_{fj} + (\gamma_j - 1) d \ln \hat{\phi}_{fj} \right), \]

where the second line comes from dividing both numerator and denominator by \(\sum_{g' \in F_j} \hat{a}_{g'f} \hat{\phi}_{g'j} \) and
the definition of $\tilde{\phi}_{fj}$ in equation (A.28) and Φ_j. Totally differentiating \(\sum_{f \in F_j} \hat{\phi}_{fj} \frac{1}{\text{MRP}_f} \),

\[
d \ln \left(\sum_{f \in F_j} \hat{\phi}_{fj} \frac{1}{\text{MRP}_f} \right) = \sum_{f \in F_j} \frac{\hat{\phi}_{fj}}{\text{MRP}_f} \left(d \ln \hat{\phi}_{fj} + d \ln \hat{\phi}_{fj} - d \ln \text{MRP}_f \right)
\]

where the second line comes from equation (A.28) and the definition of MRP_j.

Combining equations (A.32), (A.33), and (A.34),

\[
d \ln A_j = \sum_{f \in F_j} \gamma_j s_{fj} \left\{ \frac{\alpha}{\sigma-1} \left(1 + \left(\frac{\phi_{fj}}{\Phi_j} \right)^{1-\sigma} - 1 \right)^{-1} - \sum_{V \in \{L,K,M\}} \frac{\gamma_j^V}{\gamma_j} \frac{\text{MRP}_j}{\text{MRP}_f} \right\} d \ln \hat{\phi}_{fj} \\
+ \left[1 + \frac{\gamma_j - 1}{\gamma_j} \left(1 - \left(\frac{\phi_{fj}}{\Phi_j} \right)^{1-\sigma} \right) - \sum_{V \in \{L,K,M\}} \frac{\gamma_j^V}{\gamma_j} \frac{\text{MRP}_j}{\text{MRP}_f} \right] d \ln \hat{\phi}_{fj} \\
- \sum_{V \in \{L,K,M\}} \frac{\gamma_j^V}{\gamma_j} \frac{\text{MRP}_j}{\text{MRP}_f} d \ln \text{MRP}_f \right\},
\]

Combining the above equation with (A.28) and (A.30),

\[
d \ln A_j = \sum_{f \in F_j} \gamma_j s_{fj} \left\{ \frac{\alpha}{\sigma-1} \left(1 + \left(\frac{\phi_{fj}}{\Phi_j} \right)^{1-\sigma} - 1 \right)^{-1} - \sum_{V \in \{L,K,M\}} \frac{\gamma_j^V}{\gamma_j} \frac{\text{MRP}_j}{\text{MRP}_f} \right\} d \ln a_{fj} \\
+ \left[1 + \frac{\gamma_j - 1}{\gamma_j} \left(1 - \left(\frac{\phi_{fj}}{\Phi_j} \right)^{1-\sigma} \right) - \sum_{V \in \{L,K,M\}} \frac{\gamma_j^V}{\gamma_j} \frac{\text{MRP}_j}{\text{MRP}_f} \right] d \ln \phi_{fj} \\
+ \sum_{V \in \{L,K\}} \frac{\gamma_j^V}{\gamma_j} \left[\left(1 + \left(\frac{\phi_{fj}}{\Phi_j} \right)^{1-\sigma} - 1 \right) - \left(1 - \frac{\gamma_j - 1}{\gamma_j} \right) \right] \left(1 - \frac{\text{MRP}_j}{\text{MRP}_f} \right) - \sum_{V' \in \{L,K\}} \frac{\gamma_j^{V'}}{\gamma_j} \frac{\text{MRP}_j}{\text{MRP}_f} \right] d \ln \left(1 + \tau_j^V \right),
\]

Note that under monopolistic competition,

\[
\phi_{fj} = (1 + \tilde{D}_{fj})^{\frac{1}{\sigma-1}}, \quad \tilde{D}_{fj} = \frac{D_{fj}}{(P_j^H)^{\sigma-1} \rho_j^{\sigma-1} E_j}.
\]

Under the third assumption that firm export demand scales with Home market size $D_{fj} = d_{fj} \times D_j^H$, $\tilde{D}_{fj} = d_{fj}$ and $d \ln \tilde{D}_{fj} = d \ln d_{fj}$. Under this assumption, price indices and expenditure do not enter the expression for \tilde{D}_{fj}. The assumption simplifies the analysis because each firm’s own shocks to primitives do not affect the others’ ϕ_{fj}. Substituting $d \ln \phi_{fj} = d \ln \tilde{D}_{fj}$ into equation (A.35), we obtain
\[
\begin{align*}
\frac{d \ln A_j}{d t} &= \sum_{f \in F_j} \frac{\sigma - 1}{\sigma} \gamma_j \left\{ \gamma_j \left(1 + \frac{(\phi_{fj})^{1-\sigma}}{\Phi_j} \right) - \sum_{V \in \{L, K, M\}} \frac{\gamma_j V \text{MRPV}_j}{\gamma_j \text{mrp}_V f_j} \right\} d \ln a_f \\
&+ \left[1 + \frac{\gamma_j - 1}{\gamma_j} \left(1 - \frac{(\phi_{fj})^{1-\sigma}}{\Phi_j} \right) - \sum_{V \in \{L, K, M\}} \frac{\gamma_j V \text{MRPV}_j}{\gamma_j \text{mrp}_V f_j} \right] d \ln \tilde{D}_f \\
&+ \sum_{V \in \{L, K\}} \gamma_j V \left\{ \frac{\sigma - 1}{\sigma} \left(1 + \frac{(\phi_{fj})^{1-\sigma}}{\Phi_j} \right) - \left(\frac{\sigma - 1}{\gamma_j} - 1 \right) \frac{\text{MRPV}_j}{\gamma_j \text{mrp}_V f_j} \right\} d \ln \left(1 + \tau_{fj}^V \right)
\end{align*}
\]
which gives the desired results. \hfill \Box
B. DATA AND QUANTIFICATION

B.1 Data

This section describes how we constructed our main dataset from three main data sources. First, firm-level data for 1972 to 1981 are collected from the historical Annual Report of Korean Companies published by the Korea Productivity Center. The data are digitized from paper documents. The data for 1982 to 2011 come from KIS-VALUE. The coverage of the data from the Annual Report of Korean Companies is larger than that of KIS-VALUE. Therefore, we use the criterion for inclusion in KIS-VALUE, namely an asset threshold of roughly 2.3 million 2023 USD. Firms with assets below this threshold in the Annual Report of Korean Companies are excluded. We merge these two firm-level datasets based on firm names, years of starting operation, and firms’ historical records available on their websites. The number of unique firms is 23,464. The total number of firm-year observations is 323,514. Finally, firm-level data are merged to the sectoral data obtained from KLEMS and IO tables from Bank of Korea based on firms’ industry affiliations. Panel A of Figure B1 reports the yearly number of observations. Panel B reports the combined sales of the firms in the firm-level data relative to total manufacturing gross output. The coverage of our firm-level data improves over time. Panel C reports the share of manufacturing sector in overall gross output. The manufacturing share keeps increasing over time in our sample period. The sectoral classification is listed in Table B1.

Figure B1: Firm Coverage

A. The Number of Mfg. Firms per Year

B. Shares of the Firms’ Sales to Mfg. Gross Output

C. Mfg. Sectors’ Shares (%) of Gross Output

Notes. Panel A reports the number of firm observations for each year. Panel B reports the combined sales of all firms in the dataset as a ratio to manufacturing gross output. Panel C reports the manufacturing sector’s share of gross output to total gross output.

One issue is business groups, known as chaebols, that own multiple firms. We treat each firm within a chaebol group as an independent entity. There were three special cases in which existing corporations were closed, and new corporations were formed as big business groups changed their ownership structure by establishing new holding companies. In such cases, we match these existing and new corporations. These cases include LG Electronics in 2002, LG Chemicals in 2002, and SK Innovation in 2007. These instances were identified by tracking historical records of big business groups.
Table B1: Sector Classification

<table>
<thead>
<tr>
<th>Aggregated Industry</th>
<th>Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petrochemicals*</td>
<td>Coke oven products (231), Refined petroleum products (232)</td>
</tr>
<tr>
<td></td>
<td>Basic chemicals (241), Other chemical products (242)</td>
</tr>
<tr>
<td>Chemicals, and rubber and plastic products*</td>
<td>Man-made fibres (243) except for pharmaceuticals and medicine chemicals (2423)</td>
</tr>
<tr>
<td></td>
<td>Rubber products (251), Plastic products (252)</td>
</tr>
<tr>
<td>Pharmaceuticals*</td>
<td>Pharmaceuticals and medicine chemicals (2423)</td>
</tr>
<tr>
<td>Electronics*</td>
<td>Office, accounting, & computing machinery (30)</td>
</tr>
<tr>
<td></td>
<td>Electrical machinery and apparatus n.e.c. (31)</td>
</tr>
<tr>
<td>Metals*</td>
<td>Medical, precision, and optical instruments, watches and clocks (33)</td>
</tr>
<tr>
<td>Metals*</td>
<td>Basic metals (27), Fabricated metals (28)</td>
</tr>
<tr>
<td>Machinery, and transportation equipment*</td>
<td>Rubber products (251), Plastic products (252)</td>
</tr>
<tr>
<td></td>
<td>Motor vehicles, trailers and semi trailers (34)</td>
</tr>
<tr>
<td></td>
<td>Manufacture of other transport equipment (35)</td>
</tr>
<tr>
<td>Food*</td>
<td>Food products and beverages (15), Tobacco products (16)</td>
</tr>
<tr>
<td>Textiles, Apparel, and Leather*</td>
<td>Textiles (17), Apparel (18)</td>
</tr>
<tr>
<td>Manufacturing n.e.c.*</td>
<td>Leather, luggage, handbags, saddlery, harness, and footwear (19)</td>
</tr>
<tr>
<td>Wood*</td>
<td>Manufacturing n.e.c. (369)</td>
</tr>
<tr>
<td>Other nonmetallic mineral products*</td>
<td>Wood and of products, cork (20), Paper and paper products (21)</td>
</tr>
<tr>
<td>Commodity</td>
<td>Publishing and printing (22), Furniture (261)</td>
</tr>
<tr>
<td>Mining</td>
<td>Glass and glass products (261), On-metallic mineral products n.e.c. (269)</td>
</tr>
<tr>
<td>Construction</td>
<td>Agriculture, hunting, and forestry (A), Fishing (B)</td>
</tr>
<tr>
<td>Utility</td>
<td>Mining and quarrying (C)</td>
</tr>
<tr>
<td>Retail</td>
<td>Construction (F)</td>
</tr>
<tr>
<td>Transportation</td>
<td>Electricity, gas and water supply (E)</td>
</tr>
<tr>
<td></td>
<td>Wholesale and retail trade; repair of motor vehicles, motorcycles and personal and household goods (G)</td>
</tr>
<tr>
<td></td>
<td>Land transport; transport via pipelines (60)</td>
</tr>
<tr>
<td>Business service</td>
<td>Water transport (61), Air transport (62), Supporting and auxiliary transport activities; activities of travel agencies (63)</td>
</tr>
<tr>
<td></td>
<td>Post and telecommunications (64), Financial intermediation (J)</td>
</tr>
<tr>
<td></td>
<td>Real estates, renting, and business activities (K)</td>
</tr>
<tr>
<td>Other service</td>
<td>Public administration and defence; compulsory social security (L)</td>
</tr>
<tr>
<td></td>
<td>Education (M), Health and social work (N)</td>
</tr>
<tr>
<td></td>
<td>Other community, social and personal service activities (O)</td>
</tr>
<tr>
<td></td>
<td>Activities of private households as employers and undifferentiated production activities of private households (P)</td>
</tr>
<tr>
<td></td>
<td>Extra-territorial organizations and bodies (Q)</td>
</tr>
</tbody>
</table>

Notes. * denotes manufacturing sectors. The numbers in parentheses are ISIC Rev 3.1 codes.
Figure B2: Robustness. The Top-3 Concentration Ratio. Alternative Variables.

A. Domestic sales
B. Exports
C. Employment
D. Fixed assets

Notes. This figure plots shares of the sum of the top-3 manufacturing firms’ domestic sales, exports, employment, and fixed assets across sectors to the total manufacturing gross output net of exports, exports, employment, and fixed assets, respectively. The sectoral data come from KLEMS and IO tables.

Figure B3: Robustness. Concentration Ratio. Alternative Sets of Top Firms.

A. Top 1
B. Top 5
C. Top 10

Notes. This figure plots shares of the sum of the top 1, 5, and 10 manufacturing firms’ sales to the total manufacturing gross output. The sectoral data come from KLEMS and IO tables.
Figure B4: Robustness. Alternative Concentration Indices. Whole Manufacturing.

Notes. Panels A and B plot shares of the sum of the top 3 and 100 firms’ sales to the total manufacturing gross output, respectively. The selection of top firms is based on the entire manufacturing sector. Panel C reports the Herfindahl-Hirschman Index for all observations in the firm-level data.
B.2 Production Function Estimation

We combine the production function and firm demand (2.4) to derive an estimable equation. Using the fact that \(p_{jt}^H = (y_{jt}^H / y_{jt}^H)^{\frac{1}{2}} p_{jt}^H \), we obtain the following expression for non-exporters’ revenue:

\[
R_{jt}^H = (y_{jt}^H)^{\frac{1}{2}} (y_{jt}^H)^{\frac{1}{2}} P_{jt}^H = (\Lambda_{jt}^H)^{\frac{1}{2}} y_{jt}^H (y_{jt}^H)^{\frac{1}{2}} P_{jt}^H,
\]

where the second equality comes from that \(\Lambda_{jt}^H = y_{jt}^H / y_{jt}^H \). Combining the above expression with the production function and taking logs, we obtain that

\[
\ln \frac{R_{jt}^H}{P_{jt}^H} = \gamma_j^L \sigma - \frac{1}{\sigma} \ln l_{jt} + \gamma_j^K \sigma - \frac{1}{\sigma} \ln k_{jt} + \gamma_j^M \sigma - \frac{1}{\sigma} \ln m_{jt} + \frac{1}{\sigma} \ln \Lambda_{jt}^H + \frac{1}{\sigma} \ln Y_{jt}^H + \ln a_{jt}.
\]

For non-exporters, \(\Lambda_{jt}^H = 1 \), which leads to the following expression for non-exporters’ revenue deflated by the sectoral price index:

\[
\ln \frac{r_{jt}^H}{P_{jt}^H} = \beta_j^M \ln m_{jt} + \beta_j^L \ln l_{jt} + \beta_j^K \ln k_{jt} + \frac{1}{\sigma} \ln Y_{jt}^H + \frac{1}{\sigma} \ln a_{jt} + \ln u_{jt}.
\] (B.1)

The estimating equation relates deflated firm sales to production inputs \((m_{jt}, l_{jt}, \text{and } k_{jt}) \), firm productivity \(a_{jt} \) and industry size \(Y_{jt}^H \) through a series of revenue elasticities \(\beta \).\(^{18}\) We also allow for measurement error \(u_{jt} \). The revenue elasticities on the production inputs are a combination of demand and production parameters, \(\beta_j^v = \frac{\sigma - 1}{\sigma} \gamma_j^v \) for \(v \in \{L, K, M\} \). Using the calibrated \(\sigma \) and the revenue elasticities \(\beta_j^v \), we can back out the production parameters \(\gamma_j^L, \gamma_j^K, \text{and } \gamma_j^M \), whose sum \(\gamma_j \) constitutes the returns to scale.

The dependent variable is log nominal sales deflated by sectoral PPIs, \(k_{jt} \) is fixed assets deflated by the investment deflators, and \(m_{jt} \) is constructed by deflating expenditures on material inputs, \(p_{jt}^M m_{jt} \), by input deflators. We construct the input deflators using sectoral PPIs and intermediate input shares from the IO tables. We measure \(Y_{jt}^H \) by the real gross output obtained from KLEMS. Because material expenditures are available only after 1983 from KIS-VALUE, we restrict the estimation sample to observations after 1983. Due to the small number of observations in the petrochemical sector, we combine firms in petrochemical and chemical sectors when estimating the production function parameters.

Our estimation proceeds in two steps. In the first step, using the sample of never-exporters, we pin down the revenue elasticity of material inputs.\(^{19}\) From the FOC with respect to material inputs

\[^{18}\text{For exporters, we can derive the following regression model: } \ln \frac{r_{jt}^H}{P_{jt}^H} = \beta_j^M \ln m_{jt} + \beta_j^L \ln l_{jt} + \beta_j^K \ln k_{jt} + \frac{1}{\sigma} \ln Y_{jt}^H + \frac{\sigma - 1}{\sigma} \ln \Lambda_{jt}^H (R_{jt}^H, y_{jt}^H, s_{jt}; \sigma) + \beta_j^A \ln a_{jt} + \ln u_{jt}, \text{where } \Lambda_{jt}^H \text{ now appears due to exporting.}\]

\[^{19}\text{We closely follow Ruzic and Ho (2023) who proceeds in these two steps to recover the revenue elasticities. Note that the relationship does not hold for exporters due to differential markups in domestic and foreign markets.}\]
and equation \((2.8)\) we obtain:

\[
\gamma_j^M = \mu_{fjt}^H \frac{P_{m_{fjt}}^M}{p_{fjt}^H}.
\]

Summing over both sides across non-exporters and taking the average yields the following relationship for each sector:

\[
\hat{\beta}_j^M = \frac{\sigma - 1}{\sigma} \sum_t \sum_{f \in f_{jt}} \mu_{fjt}^H \frac{P_{m_{fjt}}^M}{p_{fjt}^H}.
\] (B.2)

Given the calibrated values of \(\sigma\) and \(\rho\), \(\mu_{fjt}^H\) can be computed from the data using the domestic sales shares and the expenditure share on domestic inputs (equations \((2.8)\) and \((2.10)\)). In addition to reducing the set of parameters to be estimated, this first step is one way of dealing with the identification challenges to control-function approaches of estimating (gross output) production functions, using firms’ first order conditions, which have been highlighted by Ackerberg et al. (2015), Gandhi et al. (2020), and Bond et al. (2021). In short, flexibly chosen variable inputs—as materials are often assumed to be—cannot generally be expected both to proxy for productivity through the control function and be used to estimate the revenue elasticity with respect to themselves.

For the second estimation step, we net out material inputs and domestic real gross output from the initial expression in equation \((B.1)\). Then we estimate the following modified estimating equation for the sample of never-exporters:

\[
\ln \left(\frac{r_{fjt}^H}{p_{fjt}^H} \right) - \hat{\beta}_j^M \ln m_{fjt} - \frac{1}{\sigma} \ln Y_{fjt}^H = \beta_j^L \ln l_{fjt} + \beta_j^K \ln k_{fjt} + \beta_j^A \ln a_{fjt} + \ln u_{fjt}.
\] (B.3)

OLS estimates of \((B.3)\) suffer from an endogeneity problem arising from the fact that firms make input decisions after observing productivity, which is unobservable to researchers. To deal with the endogeneity issue, we estimate \((B.3)\) using the control function approach (Olley and Pakes, 1996; Levinsohn and Petrin, 2003). We assume that productivity follows the following flexible first-order Markov process:

\[
\ln a_{fjt} = t_0 + t_1 \ln a_{fj,t-1} + \xi_{fjt},
\]

where \(\xi_{fjt}\) is an innovation to productivity. Following the literature, we also assume that firms can adjust their variable inputs—labor and materials—after observing \(a_{fjt}\), but that the capital stock cannot be adjusted contemporaneously.

Using the timing of input choices, we can invert productivity as a function of material inputs conditional on markups, markdowns, and aggregate demand in both markets (Doraszelski and Jau-mandreu, 2021; De Ridder et al., 2021). Because markups and markdowns are functions of \(s_{fjt}^H\), \(\lambda_{fjt}^H\), and \(s_{fjt}^L\), it is sufficient to invert productivity conditional on these observable shares:

\[
\ln a_{fjt} = m^{-1}(\ln m_{fjt}, \ln k_{fjt}, \ln l_{fjt}, s_{fjt}^H, \lambda_{fjt}^H, s_{fjt}^L, \ln Y_{fjt}^H).
\]

Following Ackerberg et al. (2015), we first purge out measurement errors by nonparametrically esti-
mating the following function:

$$\ln \frac{r_{jt}^H}{p_{jt}^H} - \tilde{\beta}_j^M \ln m_{jt} - \frac{1}{\sigma} \ln Y_{jt} = h(\ln l_{jt}, \ln k_{jt}, \ln m_{jt}, s_{jt}^H, \lambda_{jt}^H, s_{jt}^L, \ln Y_{jt}) + u_{jt}$$

and obtaining the estimated fit \hat{h}. Then, the parameters $\kappa = (\beta_j^L, \beta_j^K, t_0, t_1)$ are identified by the following moment conditions based on the timing structure:

$$E_t[Z_{jt} \xi_{jt}(\kappa)] = 0,$$

where $Z_{jt} = [\ln k_{jt-1}, \ln l_{jt-1}, \ln m_{jt-1}, 1, \ln a_{jt-1}]'$ is a set of instrumental variables. For a given guess of κ, we obtain $\ln a_{jt}$ as

$$\ln a_{jt} = \frac{1}{\beta_j^A} \left(\ln \frac{r_{jt}^H}{p_{jt}^H} - \tilde{\beta}_j^M \ln m_{jt} - \frac{1}{\sigma} \ln Y_{jt}^H - \beta_j^L \ln l_{jt} - \beta_j^K \ln k_{jt} \right)$$

and calculate $\xi_{jt}(\kappa)$ as the residual of the Markov process: $\xi_{jt}(\beta_j^L, \beta_j^K, \rho) = \ln a_{jt} - t_0 - t_1 \ln a_{jt-1}$. We impose a constraint on the parameter space that guarantees the second order condition of firm profit maximization problem: $\frac{\sigma}{\sigma - 1} - \gamma_j \geq 0$. Once we obtain $\beta_j^L, \beta_j^K, \text{ and } \beta_j^M$ sector-by-sector, we can obtain $\gamma_j^L, \gamma_j^K, \text{ and } \gamma_j^M$ by multiplying the estimated coefficients by $\frac{\sigma}{\sigma - 1}$.

We compute standard errors using bootstrap methods. To address potential serial correlation in firm-level error terms, we employ a nonparametric block bootstrap method with replacement across firms, in which the parameters are estimated in two steps for each bootstrapped sample. We perform 100 replications.

Table B2 reports the estimation results. The parameters are precisely estimated. We also conduct sensitivity analysis for the estimates. We consider an alternative sample including both exporters and non-exporters, an alternative IV, $Z_{jt} = [\ln k_{jt-1}, \ln l_{jt-1}, \ln m_{jt-1}, 1, \ln a_{jt-1}]'$, and an alternative Markov-process with third-order polynomials, $\ln a_{jt} = \sum_{p=0}^{3} t_p (\ln a_{jt-1})^p$.\(^{20}\) The estimates remain stable (Table B3).

\(^{20}\)An IV for the alternative process is $Z_{jt} = [\ln k_{jt-1}, \ln l_{jt-1}, \ln m_{jt-1}, 1, \ln a_{jt-1}, (\ln a_{jt-1})^2, (\ln a_{jt-1})^3]$.\(^{20}\)
Table B2: Calibrated Values of Elasticity of Substitution and Estimates of Production Function Parameters

<table>
<thead>
<tr>
<th></th>
<th>Baseline. $\sigma = 5$, $\rho = 2$</th>
<th>Robustness. σ, BW (2006), $\rho = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ γ^L_j γ^K_j γ^M_j γ_j</td>
<td>σ γ^L_j γ^K_j γ^M_j γ_j</td>
</tr>
<tr>
<td></td>
<td>(1) (2) (3) (4) (5)</td>
<td>(6) (7) (8) (9) (10)</td>
</tr>
<tr>
<td>Food, Beverage, & Tobacco</td>
<td>5 0.12*** 0.15*** 0.65*** 0.92***</td>
<td>4.73 0.12*** 0.15*** 0.66*** 0.94***</td>
</tr>
<tr>
<td></td>
<td>(0.01) (0.01) (0.01) (0.03)</td>
<td>(0.01) (0.01) (0.01) (0.03)</td>
</tr>
<tr>
<td>Textile, Apparel, & Leather</td>
<td>5 0.18*** 0.19*** 0.53*** 0.89***</td>
<td>5.12 0.16*** 0.19*** 0.52*** 0.88***</td>
</tr>
<tr>
<td></td>
<td>(0.02) (0.01) (0.01) (0.02)</td>
<td>(0.02) (0.00) (0.01) (0.02)</td>
</tr>
<tr>
<td>Wood</td>
<td>5 0.12*** 0.24*** 0.57*** 0.94***</td>
<td>6.29 0.11*** 0.22*** 0.54*** 0.87***</td>
</tr>
<tr>
<td></td>
<td>(0.01) (0.01) (0.01) (0.00)</td>
<td>(0.01) (0.00) (0.01) (0.00)</td>
</tr>
<tr>
<td>Pharmaceuticals</td>
<td>5 0.33*** 0.13*** 0.41*** 0.88***</td>
<td>1.77 0.12*** 0.12*** 0.76*** 1.0***</td>
</tr>
<tr>
<td></td>
<td>(0.16) (0.03) (0.02) (0.16)</td>
<td>(0.01) (0.01) (0.01) (0.02)</td>
</tr>
<tr>
<td>Chemicals, Plastics, & Rubber (Petrochemical)</td>
<td>5 0.20*** 0.15*** 0.64*** 0.99***</td>
<td>4.01 0.24*** 0.16*** 0.68*** 1.07***</td>
</tr>
<tr>
<td></td>
<td>(0.00) (0.01) (0.01) (0.02)</td>
<td>(0.01) (0.01) (0.01) (0.02)</td>
</tr>
<tr>
<td>Non-metallic minerals</td>
<td>5 0.46*** 0.09*** 0.56*** 1.12***</td>
<td>2.00 0.70*** 0.14*** 0.90*** 1.74***</td>
</tr>
<tr>
<td></td>
<td>(0.03) (0.01) (0.01) (0.02)</td>
<td>(0.02) (0.00) (0.01) (0.02)</td>
</tr>
<tr>
<td>Metal</td>
<td>5 0.17*** 0.11*** 0.65*** 0.93***</td>
<td>5.14 0.17*** 0.11*** 0.65*** 0.93***</td>
</tr>
<tr>
<td></td>
<td>(0.00) (0.00) (0.00) (0.01)</td>
<td>(0.00) (0.00) (0.00) (0.01)</td>
</tr>
<tr>
<td>Machinery, & Trans. equip.</td>
<td>5 0.12*** 0.12*** 0.59*** 0.83***</td>
<td>5.28 0.12*** 0.11*** 0.58*** 0.82***</td>
</tr>
<tr>
<td></td>
<td>(0.02) (0.01) (0.00) (0.02)</td>
<td>(0.02) (0.01) (0.00) (0.03)</td>
</tr>
<tr>
<td>Electronics</td>
<td>5 0.15*** 0.07*** 0.60*** 0.82***</td>
<td>4.44 0.18*** 0.07*** 0.62*** 0.88***</td>
</tr>
<tr>
<td></td>
<td>(0.02) (0.00) (0.00) (0.02)</td>
<td>(0.02) (0.00) (0.00) (0.02)</td>
</tr>
<tr>
<td>Mfg. nec</td>
<td>5 0.34*** 0.10 0.45*** 0.89***</td>
<td>2.74 0.38*** 0.11*** 0.57*** 1.06***</td>
</tr>
<tr>
<td></td>
<td>(0.06) (0.07) (0.02) (0.09)</td>
<td>(0.04) (0.07) (0.02) (0.09)</td>
</tr>
<tr>
<td>Mfg. average</td>
<td>5 0.22 0.14 0.57 0.93</td>
<td>4.14 0.23 0.14 0.65 1.02</td>
</tr>
</tbody>
</table>

Notes. This table reports the calibrated values of the elasticity of substitution and the Cobb-Douglas production function parameters for each manufacturing sector. Standard errors clustered at the firm-level are in parenthesis. *: $p < 0.1$; **: $p < 0.05$; ***: $p < 0.01$. We calculate standard errors using a nonparametric block bootstrap method with replacement across firms, in which the parameters are estimated in two steps for each bootstrapped sample. We perform 100 replications. In columns 6-10, we take the estimates of σ from Broda and Weinstein (2006). $\gamma_j = \gamma^L_j + \gamma^K_j + \gamma^M_j$.

63
Table B3: Sensitivity Analysis. Production Function Parameters

<table>
<thead>
<tr>
<th>Panel A. Baseline Estimates</th>
<th>(\gamma_j^L)</th>
<th>(\gamma_j^K)</th>
<th>(\gamma_j^M)</th>
<th>(\gamma_j)</th>
<th>(\frac{\gamma_j}{\gamma_j^L+\gamma_j^K})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.22</td>
<td>0.14</td>
<td>0.57</td>
<td>0.93</td>
<td>0.59</td>
</tr>
<tr>
<td>Median</td>
<td>0.18</td>
<td>0.13</td>
<td>0.59</td>
<td>0.92</td>
<td>0.58</td>
</tr>
<tr>
<td>SD</td>
<td>0.11</td>
<td>0.05</td>
<td>0.08</td>
<td>0.08</td>
<td>0.15</td>
</tr>
<tr>
<td>Min</td>
<td>0.12</td>
<td>0.07</td>
<td>0.41</td>
<td>0.82</td>
<td>0.34</td>
</tr>
<tr>
<td>Max</td>
<td>0.46</td>
<td>0.24</td>
<td>0.65</td>
<td>1.12</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Panel B. Including exporters & non-exporters

Mean	0.21	0.16	0.58	0.95	0.54
Median	0.19	0.17	0.59	1.0	0.53
SD	0.13	0.08	0.07	0.16	0.14
Min	0.07	0.06	0.43	0.57	0.40
Max	0.49	0.36	0.56	1.11	0.87

Panel C. \(Z_{fjt} = [\ln k_{fjt-1}, \ln l_{fjt-1}, 1, \ln a_{fjt-1}]' \)

Mean	0.22	0.16	0.57	0.94	0.58
Median	0.21	0.17	0.59	0.99	0.56
SD	0.07	0.04	0.08	0.10	0.10
Min	0.10	0.07	0.41	0.72	0.44
Max	0.36	0.21	0.65	1.03	0.77

Panel D. \(\ln a_{fjt} = \sum_{p=0}^{3} t_p (\ln a_{fjt-1})^p \)

Mean	0.22	0.11	0.57	0.91	0.66
Median	0.26	0.06	0.59	0.84	0.69
SD	0.11	0.09	0.08	0.16	0.16
Min	0.07	0.06	0.41	0.69	0.39
Max	0.40	0.32	0.65	1.20	0.84

Notes. This table report results of the sensitivity analysis of the production function parameters. Panel A reports the summary statistics of the baseline estimates. Panels B, C, and D report the summary statistics of the estimates based on the alternative sample including both exporters and non-exporters, the alternative IV \(Z_{fjt} = [\ln k_{fjt-1}, \ln l_{fjt-1}, 1, \ln a_{fjt-1}]' \), and the alternative Markov process with third-order polynomials \(\ln a_{fjt} = \sum_{p=1}^{3} t_p (\ln a_{fjt-1})^p \), respectively.
B.3 Recovering the Shocks

Data inputs.
- Sales, exports, employment, and fixed assets of manufacturing firms, ∀𝑓 ∈ 𝓅𝑗, ∀𝑗 ∈ [0, 𝐽], where 𝓅𝑗 is the set of sector 𝑗 firms observed in the firm-level data in year 𝑡;
- Sectoral gross output, exports, and import shares, PPI, 𝑗 ∈ [0, 1];
- Aggregate real GDP growth, working hours per worker, human capital adjusted population growth.

Structural parameters.
- Production function \{\gamma^L_j, \gamma^K_j, \gamma^M_j\} \in [0, 1];
- Cobb-Douglas shares of intermediate inputs \{\gamma^i_j\} \in [0, 1];
- Elasticities of substitution \sigma and \rho;
- Labor supply elasticities, \eta, \theta, and \psi.

Recovering relative productivity and distortions. Using sales and exports data, we calculate fringe firms’ domestic sales and exports as residuals:
\[r^H_{fjt} = R^H_{jt} - \sum_{f \in P_j/f} r^H_{fjt}, \quad r^F_{fjt} = R^F_{jt} - \sum_{f \in P_j/f} r^F_{fjt} \]
\(r^H_{fjt} \) and \(r^F_{fjt} \) are firm-level domestic sales and exports from KLEMS and IO tables. From these constructed fringe firms’ \(r^H_{fjt} \) and \(r^F_{fjt} \), we can compute the markup-adjusted revenue share \(\Lambda^H_{fjt} \).

Then, using these fringe firms’ domestic sales and exports, we construct sales shares as
\[s^H_{fjt} = \frac{r^H_{fjt}}{\sum_{f \in P_j/f} r^H_{fjt}} \quad \text{and} \quad s^F_{fjt} = \frac{r^F_{fjt}}{\sum_{f \in P_j/f} r^F_{fjt}} \]
Given \{\(s^H_{fjt}, s^F_{fjt}\)\} and the structural parameters, we calculate fringe firms’ distortions and labor and capital inputs in a model-consistent way. We assume that fringe firms’ distortions are the average of those of the firms present in the data. We proceed with the following algorithm for each sector and year.

Step 1. Guess \{(\tau^L_{fjt}, \tau^K_{fjt})\}_{f \in P_j}, \text{ where } \tau^L_{fjt} = \tau^K_{fjt} = 0.

Step 2.
- Make a guess on \(l_{fjt} \) and compute \{(s^L_{fjt})_{f \in P_j}, \text{ and } \{\mu^L_{fjt}\}_{f \in P_j} \}.
- Using the first-order conditions (equation A.3) and the inverse labor supply function \(w_{fjt} = F^{\frac{1}{\eta}}_{fjt} \theta^{\frac{1}{\eta}} L^{\frac{1}{\eta}}_{fjt} W_t \), we obtain that
\[\sum_{f \in P_j/f} \gamma^L_j r^H_{fjt} / \Lambda^H_{fjt} = \left(\sum_{f \in P_j/f} \mu^H_{fjt} \mu^L_{fjt} (1 + \tau^L_{fjt}) \right)^{\frac{\eta+1}{\eta}} L^{\frac{1}{\eta}}_{fjt} W_t, \]
which gives
\[L^{\frac{1}{\eta}}_{fjt} W_t = \frac{\sum_{f \in P_j/f} \gamma^L_j r^H_{fjt} / \Lambda^H_{fjt}}{\sum_{f \in P_j/f} \mu^H_{fjt} \mu^L_{fjt} (1 + \tau^L_{fjt})^{\frac{\eta+1}{\eta}}} \]

Data and guess
where the right hand side can be measured using the guessed \(\{\tau^L_{fjt}\}_{f \in \mathcal{F}} \) and employment from the data.

- Using the measured \(L^\frac{1}{\beta-\frac{1}{3}} \) \(W_t \) and fringe firms’ first-order conditions, we can obtain that

\[
l_{fjt} = \left(\frac{\gamma^L_{fjt} / \Lambda^H_{fjt}}{\sigma \frac{\sigma+1}{\sigma-1}(1 + \tau^L_{fjt})L^\frac{1}{\beta-\frac{1}{3}} W_t} \right)^{\frac{\eta}{\beta}}.
\]

- Using the obtained \(l_{fjt} \), compute the new \(\{s^L_{fjt}\}_{f \in \mathcal{F}_t} \) and compare with the previous \(\{s^L_{fjt}\}_{f \in \mathcal{F}_t} \).

- Iterate until \(\{s^L_{fjt}\}_{f \in \mathcal{F}_t} \) is consistent with fringe firms’ first order conditions and the guess of \(\{\tau^L_{fjt}\}_{f \in \mathcal{F}_t}(\tilde{f}) \).

Step 3.

- Make a guess of \(k_{fjt} \) and compute \(\{s^K_{fjt}\}_{f \in \mathcal{F}_t} \).

- Using the first-order conditions (equation A.3), we obtain that

\[
\sum_{f \in \mathcal{F}_t(\tilde{f})} \gamma^K_{fjt} / \Lambda^H_{fjt} = \sum_{f \in \mathcal{F}_t(\tilde{f})} \mu^H_{fjt}(1 + \tau^K_{fjt})R_k f_{jt},
\]

which gives

\[
\rho = \frac{\sum_{f \in \mathcal{F}_t(\tilde{f})} \gamma^K_{fjt} / \Lambda^H_{fjt}}{\sum_{f \in \mathcal{F}_t(\tilde{f})} \mu^H_{fjt}(1 + \tau^K_{fjt})k_{fjt}},
\]

where the right hand side can be measured using the guessed \(\{\tau^K_{fjt}\}_{f \in \mathcal{F}_t(\tilde{f})} \) and fixed assets from the data.

- Using the measured \(\rho \) and fringe firms’ first-order conditions, we can obtain that

\[
k_{fjt} = \left(\frac{\gamma^K_{fjt} / \Lambda^H_{fjt}}{\sigma \frac{\sigma+1}{\sigma-1}(1 + \tau^K_{fjt})\rho} \right).
\]

- Using the obtained \(k_{fjt} \), compute the new \(\{s^K_{fjt}\}_{f \in \mathcal{F}_t} \) and compare with the previous \(\{s^K_{fjt}\}_{f \in \mathcal{F}_t} \).

- Iterate until \(\{s^K_{fjt}\}_{f \in \mathcal{F}_t} \) is consistent with fringe firms’ first order conditions and the guess of \(\{\tau^K_{fjt}\}_{f \in \mathcal{F}_t(\tilde{f})} \).

Step 4. Using fringe firms’ labor and capital inputs calculated in the previous steps, we construct \(\{s^L_{fjt}, s^K_{fjt}\}_{f \in \mathcal{F}_t} \).

Step 5. Using \(\{s^H_{fjt}, s^F_{fjt}, s^L_{fjt}, s^K_{fjt}\}_{f \in \mathcal{F}_t} \) and \(\{\Lambda^H_{fjt}\}_{f \in \mathcal{F}_t} \), solve the system of equations (2.12), (2.13), (2.14), and (2.15) and obtain \(\{a_{fjt}, \tau^L_{fjt}, \tau^K_{fjt}, D_{fjt}\}_{f \in \mathcal{F}_t} \) that is normalized relative to fringe firms.

For non-exporters, set \(D_{fjt} = 0 \).

Step 6. Compare obtained \(\{\tau^L_{fjt}, \tau^K_{fjt}\}_{f \in \mathcal{F}_t} \) in the previous step to the initial guess.
Step 7. Iterate until \(\{\tau_{L}^{j}, \tau_{K}^{j}\}_f \in \mathcal{F}_j \) converge.

Step 8. Set \(1 + \tau_{L}^{f} \) and \(1 + \tau_{K}^{f} \) to satisfy \(\sum_{f \in \mathcal{F}_j} S_{f j t}^{j} \frac{1}{(1 + \tau_{L}^{f})_{\tilde{u}_{f j t}^{j}}} = 1 \) and \(\sum_{f \in \mathcal{F}_j} S_{f j t}^{j} \frac{1}{(1 + \tau_{K}^{f})_{\tilde{u}_{f j t}^{j}}} = 1 \), respectively.

Recovering the remaining shocks. We now describe the procedure to back out the remaining shocks: \(\tilde{\phi}_t \) and \(\{P_{F}, a_{f j t}, D_{f j t}\}_{j \in [0,1]} \). We solve the full model and proceed with the following algorithm.

1. Make a guess for the shocks: \(\tilde{\phi}_t^{(0)} \) and \(\{P_{F}^{(0)}, a_{f j t}^{(0)}, D_{f j t}^{(0)}\}_{j \in [0,1]} \)

2. Based on the guess, compute firms’ productivity and foreign demand shocks as \(a_{f j t}^{(0)} = a_{f j t}^{(0)} \times \hat{A}_{f j t}^{(0)} \) and \(D_{f j t}^{(0)} = D_{f j t}^{(0)} \times \hat{D}_{f j t}^{(0)} \) for all firms and sectors, where \(\hat{A}_{f j t} \) and \(\hat{D}_{f j t} \) are the backed out productivity and foreign demands relative to the fringe firm within sectors, as described above.

3. Feed the firm-level shocks \(\{a_{f j t}^{(0)}, D_{f j t}^{(0)}, \tau_{L}^{f}, \tau_{K}^{f}\}_f \in \mathcal{F}_j \), \(\{P_{F}^{(0)}, a_{f j t}^{(0)}\}_{j \in [0,1]} \), and \(\tilde{\phi}_t^{(0)} \) and solve the model. Note that distortions are backed out in the procedure above.

4. Update \(\{P_{F}^{(0)}, a_{f j t}^{(0)}\}_{j \in [0,1]} \) until the import shares of the model fit the data.

5. Update \(\{D_{f j t}^{(0)}\}_{j \in [0,1]} \) until the sectoral exports of the model fit the data.

6. Update \(\{a_{f j t}^{(0)}\}_{j \in [0,1]} \) until the sectoral gross outputs of the model fit the data.

7. Update fringe firm’s productivity relative to that of the reference sector \(j_0 \), \(\{a_{f j t}/a_{f j t}^{(0)}\}_{j \in [0,1]} \) by fitting \(\text{PPI}_{j t}/\text{PPI}_{j_0 t}^{(0)} \). We assume \(\text{PPI}_{j_0 t} = 1 \) for all \(t \).

8. Update fringe firm’s productivity of the reference sector \(a_{f j t}/a_{f j t_0}^{(0)} \) by fitting the aggregate real GDP growth, where \(t_0 \) denotes the initial year of our data. We normalize \(a_{f j t_0}^{(0)} \) to one.

9. Update \(\tilde{\phi}_t \) by fitting working hours per worker in the model (equation 2.2) to the data counterpart.
B.4 More on Markups

Alternative markup scenarios. Panel A of Figure B5 plots the aggregate markup using only markups in the domestic market as defined below:

\[
\mathcal{M}_H^{jt} = \left(\sum_{f \in F_{jt}} \left(\frac{\mu^{H}_{jft}}{\sigma^{H}_{jft}} \right)^{-1} \right)^{-1} \quad \text{and} \quad \mathcal{M}_H^{t} = \left(\int_{0}^{1} \frac{1}{\mathcal{M}_H^{jt}} S_{j,t-1} \right) \, dj. \tag{B.4}
\]

Since our model assumes that the markup in domestic market is always larger than in export market, this domestic markup is larger than the aggregate markup. Panel A shows that the domestic markup also increases faster than the aggregate markup, but the difference is minor.

Panel B of Figure B5 plots the domestic markup when we fix the sectoral import and export shares to those of the initial year. It is intended to answer the question of how much changes in import competition affected the domestic markups. Panel B shows that the domestic markup with constant import penetration is not larger than in the baseline case. This is because import shares did not necessarily increase over time in all sectors: some sectors had the higher import shares in the initial year compared to later years, leading to the higher import shares in the counterfactuals, not lower ones. Therefore, the aggregate domestic markup is lower in this the counterfactual, not higher.

Figure B5: Domestic Markups

![Graph showing domestic and aggregate markups]

Notes. Panel A plots the aggregate markup and domestic markup \(\mathcal{M}_H^{jt} \) defined in equation (B.4). Panel B plots the baseline domestic markup along with a counterfactual domestic markup when we fix sectoral import and export shares at the initial year.

Markup estimation based on the production function approach. We next estimate markups following the production function approach in De Loecker and Warzynski (2012). As in De Loecker et
where \(r_{fjt} \) denotes sales, \(k_{fjt} \) capital, \(a_{fjt} \) productivity, and \(\varepsilon_{fjt} \) measurement error. Total variable costs \(n_{fjt} \) are the sum of the wage bill and material input expenditures, similar to the variable Cost of Goods Sold (COGS) in US Compustat, deflated by input price deflators. We assume that \(\ln a_{fjt} \) follows a first-order Markov process:
\[
\ln a_{fjt} = g(\ln a_{fj,t-1}) + \xi_{fjt},
\]
where \(\xi_{fjt} \) denotes innovations in productivity.

To account for potential technological changes over time and across sectors, we allow \(\theta^n_{jt} \) and \(\theta^k_{jt} \) to be sector-specific and time-varying. We estimate equation (B.5) on 5-year rolling windows for each sector. We focus on the sample period 1985-2011 because the total variable costs \(n_{fjt} \) are not reported reliably before 1985.

We proceed in three steps. In the first step, given that productivity is an invertible function of the inputs:
\[
\ln a_{fjt} = h(\ln n_{fjt}, \ln k_{fjt}),
\]
we rewrite the production function as:
\[
\ln r_{fjt} = \theta^n_{jt} \ln n_{fjt} + \theta^k_{jt} \ln k_{fjt} + h(\ln n_{fjt}, \ln k_{fjt}) + \varepsilon_{fjt} = \mathcal{H}(\ln n_{fjt}, \ln k_{fjt}) + \varepsilon_{fjt}.
\]

We approximate \(\mathcal{H}(\ln n_{fjt}, \ln k_{fjt}) \) using third-order polynomials of \(\ln n_{fjt} \) and \(\ln k_{fjt} \). We then regress \(\ln r_{fjt} \) on these polynomial terms and obtain predicted values, which removes measurement errors from \(\ln r_{fjt} \).

In the second step, we estimate \(\theta^n_{jt} \) and \(\theta^k_{jt} \) using the following moment conditions:
\[
\mathbb{E}[Z_{fjt}\xi_{fjt}] = 0, \quad Z_{fjt} = (\ln k_{fjt}, \ln n_{fj,t-1})',
\]
where \(\xi_{fjt} \) is obtained as residuals from regressing \(\ln a_{fjt} \) on third-order polynomials of \(\ln a_{fj,t-1} \) for a given guess of \(\theta^n_{jt} \) and \(\theta^k_{jt} \).

Finally, firms’ cost minimization implies that the markup can be expressed as the elasticity of output to variable input \(\theta^n_{jt} \) and the revenue share of the variable input:
\[
\mu_{fjt} = \theta^n_{jt} \frac{P^n_{jt}n_{fjt}}{r_{fjt}/\exp(\varepsilon_{fjt})},
\]
where \(P^n_{jt} \) is the price of \(n_{fjt} \). When calculating the revenue share, we correct for measurement errors by adjusting by \(\exp(\varepsilon_{fjt}) \). We compute the aggregate markups by averaging across firms using firm-specific weights \(\omega_{fjt} \):
\[
\mu_t = \sum_f \omega_{fjt} \mu_{fjt}.
\]

We consider two sets of weights: sales and variable input expenditures (De Loecker et al., 2020; Edmond et al., 2023).

Panel A of Figure B6 displays the aggregate markups based on the two sets of weights. Despite the observed increase in concentration, we find no evidence of increasing aggregate markups over
Figure B6: Aggregate Markups and the Labor Share

Notes. Panels A and B illustrate the aggregate markup estimated using the production function approach, based on time-varying and time-invariant estimates of the output elasticities θ^n_{jt} and θ^k_{jt} in equation (B.5), respectively. Panel C displays the aggregate manufacturing labor share, defined as the ratio of total the wage bill to total value added across all manufacturing sectors.

As a sanity check on these results, Panel C of Figure B6 plots the labor share, defined as the ratio of the total wage bill to total value added across all manufacturing sectors. Rising aggregate markups have been proposed as one potential mechanism for the declining aggregate labor share (e.g. Autor et al., 2020; Kehrig and Vincent, 2021). If increased concentration raised aggregate markups, this could have led to a decline in the labor share. The figure illustrates that if anything, the labor share in manufacturing rose over this period, consistent with our finding of little to no increase in aggregate markups.

While the aggregate markups derived from market shares in our baseline model show a very modest positive trend, the evolution of markups based on the production function approach follows a U-shape since 1985. It is common to find conflicting trends in markups inferred from market shares vs. the production function approach. For instance, Afrouzi et al. (2023) observe a negative correlation between Atkeson-Burstein markups and those estimated via the production function approach. Moreover, even when using the production function approach, Raval (2023) finds that markups estimated using labor inputs are negatively correlated with those estimated using material inputs, and exhibit divergent trends. What is important for us in this robustness exercise is that the production function approach confirms that there has not been a notable increase in aggregate markups in this period in South Korea.

Panels A and B exhibit different markup trends compared to those found by De Loecker and Eeckhout (2018) using data from South Korean publicly traded firms in Compustat Global. However, other work has found that markup estimation via the production function approach can be sensitive to the measurement of variable inputs (e.g. Traina, 2018), and the sample composition (e.g. Díez et al., 2021). In particular, Díez et al. (2021) expand the sample beyond the publicly listed firms by using
the ORBIS data. They find that the patterns observed in De Loecker and Eeckhout (2018) among listed firms are significantly mitigated in a broader dataset. The Diez et al. (2021) dataset aligns more closely with our sample, which also includes non-listed firms.

Market structure. We next examine the welfare costs of oligopolistic and oligopsonistic market power. To do this, we compare the welfare in the baseline model to an alternative model with monopolistic and monopsonistic competition, in which the large firms’ markups and markdowns are the same as the other firms’. In this alternative model, we maintain all the baseline firm-level shocks. Thus, comparing welfare levels in the baseline vs. the alternative reveals the welfare costs of higher markups/markdowns by the large firms.

Table B4 reports the differences in welfare compared to the baseline under three alternative market structures. Without oligopolistic market power, welfare increases by around 1.06%, while the removal of oligopsonistic market power has negligible welfare impacts. The combined welfare impact of oligopolistic and oligopsonistic behavior is therefore about 1%. Appendix Figure B7 reports the accompanying concentration ratios. Interestingly, the concentration ratio is actually about 3 percentage points higher under monopolistic competition in goods markets. This is because compared to monopolistic competition, under oligopoly the largest firms charge higher prices and produce less, leading to lower revenues and lower concentration.

Table B4: Counterfactual: Welfare Effects of Market Structure

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor market</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>△ Welfare (%)</td>
<td>0.00</td>
<td>1.06</td>
<td>1.07</td>
</tr>
</tbody>
</table>

Notes. This table reports the percentage differences in welfare in the alternative monopolistic/monopsonistic competition models relative to the baseline.
Figure B7: The Top-3 Concentration Ratio, Alternative Market Structures

Notes. This figure plots concentration ratios of the top-3 firms under alternative market structures.
B.5 Constructing the Counterfactual Growth Rates of the Top-3 Firms

Denote the unweighted average DHS growth rate (Davis et al., 1998) of a variable among a subset of firms as:

\[\tilde{X}_{jt}^a = \sum_{f \in F_{jt}^a \cap F_{jt}^{cont,nz}} \frac{X_{fjt} - X_{fjt,t-1}}{2(X_{fjt} + X_{fjt,t-1})} \]

for \(X_{fjt} \in \{ a_{fjt}, D_{fjt}, 1 + \tau^L_{fjt}, 1 + \tau^K_{fjt} \} \). \(F_{jt}^a \) is the set of sector \(j \) firms of age bin \(a \). When computing the unweighted average, we restrict the set of firms to satisfy two conditions denoted by \(F_{jt}^{cont,nz} := \{ f | f^{entry}_f < t, X_{fjt,t-1} \neq 0, X_{fjt} \neq 0 \} \), where \(f^{entry} \) is firm \(f \)’s entry year.\(^{21}\) We impose the two conditions: (i) firms consecutively operated in \(t - 1 \) and \(t \) \((t^{entry}_f < t)\) and (ii) their values of \(X_{fjt} \) were non-zero in \(t - 1 \) and \(t \) \((X_{fjt,t-1} \neq 0, X_{fjt} \neq 0)\). The latter condition only applies to foreign demand shocks, because \(\{ a_{fjt}, 1 + \tau^L_{fjt}, 1 + \tau^K_{fjt} \} \) are almost surely non-zero for operating firms. This condition implies that when computing the average growth for foreign demand shocks, we restrict the set of firms to be exporters consecutively in \(t - 1 \) and \(t \) \((D_{fjt,t-1} > 0, D_{fjt} > 0)\). We compute the unweighted average within age bins to account for the fact that young firms exhibit different growth patterns compared to older firms (e.g., Decker et al., 2014, 2016), and that shock processes may differ depending on firm age (e.g., Luttmer, 2007; Arkolakis, 2016; Sterk et al., 2021).

Using these computed unweighted averages, for the top-3 firm \(f \) in sector \(j \) of age bin \(a \), we construct sequences of the counterfactual shocks:

\[
X_{fjt}^c = \begin{cases}
X_{fjt} & \text{if } f \notin F_{jt}^{cont,nz} \\
(1 + \tilde{X}_{jt}^a)X_{fjt,t-1}^c & \text{if } f \in F_{jt}^{cont,nz} \cap F_{jt}^3 \\
(1 + \tilde{X}_{fjt})X_{fjt,t-1}^c & \text{if } f \in F_{jt}^{cont,nz} \cap (F_{jt}/F_{jt}^3).
\end{cases} \tag{B.6}
\]

The first line means that we assign the factual values of shocks to firms entering the top 3 in \(t \) or to firms that have zero values of \(X_{fjt} \) in either \(t - 1 \) or \(t \) \((f \notin F_{jt}^{cont,nz})\). For example, we apply the factual values of foreign demand shocks in levels in \(t \) when a firm starts exporting in \(t \) regardless of its top-3 status. The second line implies that for the top-3 firms \((f \in F_{jt}^3) \), we apply the unweighted average \(\tilde{X}_{jt}^a \). By applying \((1 + \tilde{X}_{jt}^a)X_{fjt,t-1}^c\), we make the top-3 firms grow at the same rate as the other firms within the same sector and age bin. The exercises that feed the counterfactual shocks to these top-3 firms can be viewed as removing the “granular residual” studied in Gabaix (2011).\(^{22}\) The third line says that for firms that are not in the top-3 group in \(t \) \((f \in F_{jt}/F_{jt}^3)\), we apply the factual growth rate \(\tilde{X}_{fjt} \).

\(^{21}\)Note that firms that exit in \(t \) are dropped when calculating the average growth rates.

\(^{22}\)According to Gabaix (2011), the granular residual of the top 3 firms within sectors is defined as \(\sum_{f \in F_{jt}^3} \frac{r_{fjt}}{\tau_{fjt}} (\tilde{X}_{fjt} - \tilde{X}_{jt}^a) \). In the counterfactuals, because we are replacing \(\tilde{X}_{fjt} \) with \(\tilde{X}_{jt}^a \), we are removing the the top-3 firm granular residual.
B.6 Can Distortions Explain the Entire Increase in Concentration?

In this subsection, we use only distortions to match the increased sales concentration. Specifically, we run the following two scenarios. First, we set the capital distortions to match the evolution of the domestic sales shares using equation (2.12), but do not match the capital shares. Second, we set the labor distortions to match the evolution in the domestic sales shares but not the wage bill shares. We fix the relative productivity of each firm to the factual productivity in the initial year. These scenarios answer the question: what would the economy have looked like if the relative productivities of all the firms remained the same, and instead the increase in concentration was entirely driven by the evolution of distortions over time?

Figure B8: Top-3 Distortions and Capital Shares, Distortion-Only Scenario

Notes. Panel A plots the unweighted average $1 + \tau_{fjt}^K$ of the top-3 firms divided by that of other firms when we pick $1 + \tau_{fjt}^K$ to match the evolution of sales shares. Panel B displays the capital shares of the top-3 firms in these counterfactuals and the data. Panel C plots the unweighted average $1 + \tau_{fjt}^L$ of the top-3 firms divided by that of other firms when we pick $1 + \tau_{fjt}^L$ to match the evolution of sales shares. Panel D displays the wage bill shares of top-3 firms in these counterfactuals and the data.
Panels A and C plot the distortions facing the top-3 firms relative to the other firms in this scenario. The relative distortions required to match the change in sales concentration are much lower than in the baseline case (Figure 2), meaning the top-3 firms are being subsidized much more. This is because without heterogeneous productivity growth, the top-3 firms would need to be subsidized at an ever greater rate to match their increasing sales share. Table B5 displays the changes in real GDP and welfare in the counterfactuals where these firms’ shocks were replaced with the average firms’ shocks, as in Figure 4 and Table 3. Unlike in the main text, here both real GDP and welfare are higher in the counterfactuals. That is, when concentration is driven purely by ever-exacerbating distortions, the increase in concentration is indeed welfare-reducing, so these firms would be supervillains instead of superstars.

Panels B and D of Figure B8 show the feature of the data that falsifies this view of South Korean concentration. They display the factor shares of the top-3 firms in the data, and compare them to those predicted by this model scenario. The distortion-driven concentration scenario implies that the top-3 shares in total capital and employment are about double what they are in the data by 2011. This is sensible: engineering the increase in top-3 sales shares with distortions requiring subsidizing these firms’ factor usage at a very high rate. In turn, that would imply they take up more and more of the factors. This is of course at odds with the data, where their increase in the factor shares is roughly commensurate with their change in sales shares.

Table B5: Counterfactual Real GDP and Welfare when Engineering the Observed Rise in Concentration Purely Through Distortions

<table>
<thead>
<tr>
<th>Counterfactual vs. Factual Shocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Distortions</td>
</tr>
<tr>
<td>△ CR in 2011 (pp)</td>
</tr>
<tr>
<td>(1)</td>
</tr>
<tr>
<td>–12.35</td>
</tr>
<tr>
<td>Labor Distortions</td>
</tr>
<tr>
<td>△ CR in 2011 (pp)</td>
</tr>
<tr>
<td>(4)</td>
</tr>
<tr>
<td>–8.59</td>
</tr>
</tbody>
</table>

Notes. This table reports the real GDP and welfare effects when we replace sequences of shocks of all the top-3 firms with the counterfactual sequences of shocks defined in equation (B.6), in the model implementation that uses only capital and labor distortions to match the evolution of sales shares.
B.7 Spillovers to Non-Top-3 Firms

We assume that productivity of non-top-3 firms consists of exogenous and spillover components:

\[a_{fjt} = \tilde{a}_{fjt} \times \exp \left(\frac{\sum_{f' \in \mathcal{F}_{njt}^3} a_{f'jt}^{\sigma - 1}}{\sum_{f' \in \mathcal{F}_{njt}^3} a_{f'jt}^{\sigma - 1}} \right), \]

where \(\tilde{a}_{fjt} \) denotes the exogenous component, \(\mathcal{F}_{njt}^3 \) a set of the top-3 firms in region \(n \) and sector \(j \), and \(\mathcal{F}_{njt}^n \) a set of all firms in region \(n \) and sector \(j \).

Choi and Shim (2023) provide causal evidence on the local spillover effects of foreign technology adoption on local firms’ sales or revenue TFP. Using the IV strategy, they estimate a semi-elasticity of shares of firms that adopted modern foreign technology of around 4. Given that the large firms were more active in adopting technologies, we use the proxy for local shares of adopting firms as \(\frac{\sum_{f' \in \mathcal{F}_{njt}^3} a_{f'jt}^{\sigma - 1}}{\sum_{f' \in \mathcal{F}_{njt}^n} a_{f'jt}^{\sigma - 1}} \), which can be interpreted as the top-3 firms’ sales shares within region \(n \) and sector \(j \). We supplement our analysis with additional information on firms’ locations of production to compute the spillover terms. Based on Choi and Shim (2023)’s estimates and assumed values for \(\sigma \), we set \(\delta = 1 \). We restrict the spillover effects to non-top-3 firms, excluding fringe firms, so our spillover exercise can be viewed as a lower bound of the total spillover effects.
B.8 Additional Tables and Figures

Figure B9: The Impact of the Top-3 Micro Shocks: Productivity, Markups, and Markdowns

Notes. This figure illustrates counterfactual aggregate productivity (Panel A), markup (B), and markdown (C) relative to the baseline, under the counterfactual sequences of the top-3 firms' shocks defined in equation (B.6).
Figure B10: The Impact of Shocks to Samsung Electronics and Hyundai Motors: Productivity, Markups, and Markdowns

Notes. This figure illustrates counterfactual aggregate productivity (Panels A and D), markup (B and E), and markdown (C and F) relative to the baseline, under the counterfactual sequences of the shocks to Samsung Electronics (top half) or Hyundai Motors (bottom half) defined in equation (B.6).
Figure B11: Market Share of Top-3 Firms in the Efficient Allocation vs. Baseline

A. Top-3 Market Share

B. CR3 ratio (%)

Notes. Panel A plots the top-3 firms’ sales shares in 2011. The x-axis is the baseline economy and the y-axis is a hypothetical economy with no dispersion in τ_{ijt}^K and τ_{ijt}^L, and where all firms are monopolistically competitive. Panel B displays the top-3 concentration ratio in the baseline and counterfactual efficient economy.
Table B6: Robustness. The Top-3 Micro Shocks. Alternative Parameterizations

<table>
<thead>
<tr>
<th>Panel</th>
<th>Parameters</th>
<th>Counterfactual vs. Factual Shocks</th>
<th>Productivity shocks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>All shocks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>△ CR in 2011 (pp)</td>
<td>△ Real GDP per capita in 2011 (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Panel A. Baseline</td>
<td></td>
<td>-13.31</td>
<td>-15.13</td>
</tr>
<tr>
<td>Panel B. Sector-specific σ_j (Broda and Weinstein, 2006)</td>
<td>$\sigma = 7$</td>
<td>-13.50</td>
<td>-14.00</td>
</tr>
<tr>
<td></td>
<td>$\sigma = 3$</td>
<td>-11.57</td>
<td>-17.20</td>
</tr>
<tr>
<td>Panel C. ρ</td>
<td>$\rho = 2.5$</td>
<td>-13.14</td>
<td>-14.90</td>
</tr>
<tr>
<td></td>
<td>$\rho = 1.5$</td>
<td>-13.91</td>
<td>-15.84</td>
</tr>
<tr>
<td>Panel E. η</td>
<td>$\eta = 3$</td>
<td>-13.29</td>
<td>-14.65</td>
</tr>
<tr>
<td>Panel F. θ</td>
<td>$\theta = 1.5$</td>
<td>-13.33</td>
<td>-15.14</td>
</tr>
<tr>
<td></td>
<td>$\theta = 2.5$</td>
<td>-13.28</td>
<td>-15.11</td>
</tr>
<tr>
<td>Panel G. ψ</td>
<td>$\psi = 0$</td>
<td>-13.31</td>
<td>-16.24</td>
</tr>
<tr>
<td></td>
<td>$\psi = 1$</td>
<td>-13.32</td>
<td>-14.26</td>
</tr>
<tr>
<td>Panel H. ζ</td>
<td>$\zeta = 0.5$</td>
<td>-13.31</td>
<td>-15.13</td>
</tr>
<tr>
<td></td>
<td>$\zeta = 1$</td>
<td>-13.31</td>
<td>-15.13</td>
</tr>
<tr>
<td>Panel I. Constant returns to scale $\gamma_j = 1, \forall j$</td>
<td></td>
<td>-11.96</td>
<td>-13.49</td>
</tr>
<tr>
<td>Panel J. Allowing for love-of-variety</td>
<td></td>
<td>-12.63</td>
<td>-14.28</td>
</tr>
</tbody>
</table>

Notes. This table reports the sensitivity analysis of the top-3 shock counterfactuals under alternative sets of parameters.